

QCG-PilotJob

A python service for easy execution of many tasks inside a single allocation.

Basics

	Overview

	Installation

Usage

	Examples

	Modes of execution

	Parallelism

	QCG-PilotJob Manager options

Further reading

	Key concepts

	Execution environments

	Execution models

	File based interface

	Executor API

	Iteration resources schedulers

	Resuming prematurely interrupted computations

	Performance statistics

	Performance tuning

	Processes statistics

	Log files

	Slurm performance

Miscellaneous

	FAQ

	Dictionary

	License

API Docs

	qcg.pilotjob.api package

	qcg.pilotjob.executor_api package

Indices and tables

	Index

	Module Index

	Search Page

Authors

Bartosz Bosak, Piotr Kopta, Tomasz Piontek (PSNC)

Overview

The QCG-PilotJob system is designed to schedule and execute many
small jobs inside one scheduling system allocation. Direct submission of
a large group of jobs to a scheduling system can result in long
aggregated time to finish as each single job is scheduled independently
and waits in a queue. On the other hand the submission of a group of
jobs can be restricted or even forbidden by administrative policies
defined on clusters. One can argue that there are available job array
mechanisms in many systems, however the traditional job array mechanism
allows to run only bunch of jobs having the same resource requirements
while jobs being parts of larger workflows by nature vary in
requirements and therefore need more flexible solutions.

The core component of QCG-PilotJob system is QCG-PilotJob Manager.
From the scheduling system perspective, QCG-PilotJob Manager, is seen as
a single job inside a single user allocation. It means that QCG-PilotJob Manager controls an execution
of a complex experiment consisting of many
jobs on resources reserved for the single job allocation. The manager
listens to user’s requests and executes commands like submit job, cancel
job and report resources usage. In order to manage the resources and
jobs the system takes into account both resources availability and
mutual dependencies between jobs. Two interfaces are defined to
communicate with the system: file-based (batch mode) and API based. The former
one is dedicated and more convenient for a static scenarios when a
number of jobs is known in advance to the QCG-PilotJob Manager start.
The API based interface is more general and flexible as it allows to
dynamically send new requests and track execution of previously
submitted jobs during the run-time.

To allow user’s to test their scenarios, QCG-PilotJob Manager
supports local execution mode, in which all job’s are executed on
local machine and doesn’t require any scheduling system allocation.

QCG-PilotJob’s source code is publicly available at: https://github.com/vecma-project/QCG-PilotJob

Components

QCG-PilotJob consists of three components:

	QCG-PilotJob Core

	the essential part of the software, provides all basic mechanism needed to use QCG-PilotJob

	QCG-PilotJob Command Line Tools

	a set of command line tools for reporting and analysis of QCG-PilotJob execution

	QCG-PilotJob Executor API

	an alternative, simplified API for QCG-PilotJob

Installation

QCG-PilotJob requires Python version >= 3.6.

All QCG-PilotJob components can be installed by a regular user (without administrative privileges)
In the presented instructions we assume such type of installation.

Preparation of virtualenv (optional step)

In order to make dependency management easier, a good practice is to
install QCG-PilotJob into a fresh virtual environment. To do so, we need the latest
version of pip package manager and virtualenv. They can be installed in
user’s directory by the following commands:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py --user
pip install --user virtualenv

To create private virtual environment for installed packages, type
the following commands:

virtualenv venv
. venv/bin/activate

Installation of QCG-PilotJob packages

There are two options for the actual installation of QCG-PilotJob packages. You can use the PyPi repository
or install the packages from GitHub.

PyPi

The installation of QCG-PilotJob Core package from the PyPi repository is as simple as:

pip install qcg-pilotjob

In a similar way you can install supplementary packages, namely
QCG-PilotJob Command Line Tools and QCG-PilotJob Executor API:

pip install qcg-pilotjob-cmds
pip install qcg-pilotjob-executor-api

GitHub

To install QCG-PilotJob packages directly from github.com you can use the following commands:

pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git#subdirectory=components/core
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git#subdirectory=components/cmds
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git#subdirectory=components/executor_api

You can also install the packages from a specific branch:

pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git@branch_name#subdirectory=components/core
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git@branch_name#subdirectory=components/cmds
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git@branch_name#subdirectory=components/executor_api

Examples

QCG-PilotJob Manager can be used in two different ways:

	as an service accessible with API

	as a command line utility to execute static, prepared job workflows in a batch mode

The first method allows to dynamically control the jobs execution.

Example API application

Let’s write a simple program that will runs 4 instances of simple bash script.

First, we must create an instance of QCG-PilotJob Manager

from qcg.pilotjob.api.manager import LocalManager

manager = LocalManager()

This default instance, when launched outside Slurm scheduling system allocation, will use all local available CPU’s.
To check what resources are available for our future jobs, we call a resources method.

print('available resources: ', manager.resources())

In return we should give something like:

available resources: {'total_nodes': 1, 'total_cores': 8, 'used_cores': 0, 'free_cores': 8}

where total_cores and free_cores depends on number of cores on machine where we are running this example.
So our programs will have access to all free_cores, and QCG-PilotJob manager will make sure that tasks do not
interfere with each other, so the maximum number of simultaneously running job’s will be exact free_cores.

To run jobs, we have to create a list of job descriptions and sent it to the QCG-PilotJob manager.

from qcg.pilotjob.api.job import Jobs
jobs = Jobs().add(script='echo "job ${it} executed at `date` @ `hostname`"', stdout='job.out.${it}', iteration=4)
job_ids = manager.submit(jobs)
print('submited jobs: ', str(job_ids))

In this code, we submitted a job with four iterations. The standard output stream should be redirected to file
job.out with iteration index as postfix. As a program to execute in job iteration, we passed the simple bash command.
The above code should print a list with just one element: the submitted job identifier. Because we didn’t name our
job, the automatically generated name was returned. The job name can passed as keyword argument name to Jobs.add
method.

Note

In the example above we presented the simplified API to submit a job. In case of more complicated
scenarios we can use the full JSON description to define a submitted job by using Jobs.add_std
method where all JSON attributes are passed as keyword parameters.
The full list of accepted parameters can be found in the submit command documentation described
in the File based interface document.

Now we can check the status of our submitted job:

job_status = manager.status(job_ids)
print('job status: ', job_status)

The job_status should contain dictionary jobs with our job status information. Because our job was very short,
and should finish immediately, the state key of data dictionary of our job’s status, should contain value
SUCCEED. For longer jobs, we may want to wait until our submitted jobs finish, to do this we use the wait4
Manager method:

manager.wait4(job_ids)

Alternatively we can use the wait4all method, which will wait until all submitted to the QCG-PilotJob Manager jobs
finish:

manager.wait4all()

If we check current directory, we can see that bunch of job.out. files has been created with a proper content.
If we want to get detailed information about our job, we can use the info method:

job_info = manager.info(job_ids)
print('job detailed information: ', job_info)

In return we will get information about iterations (how many finished successfully, how many failed) and when our job
finished.

It is important to call finish method at the end of our program. This method sent a proper command to QCG-PilotJob
Manager instance, and terminates the background thread in which the instance has been run.

manager.finish()

QCG-PilotJob Manager creates a directory .qcgpjm-service- where the following files are stored:

	service.log - logs of QCG-PilotJob Manager, very useful in case of problems

	jobs.report - the file containing information about all finished jobs, by default written in text format, but
there is an option for JSON format which will be easier to parse.

See also

The full documentation of the API methods and it’s arguments is available in the qcg.pilotjob.api package
documentation.

Example batch usage

The same jobs we can launch using the batch method and prepared input files. In this mode, we have to create JSON file
with all requests we want to sent to QCG-PilotJob Manager. For example, the file contains jobs we submitted in previous
section will look like this:

[
 {
 "request": "submit",
 "jobs": [
 {
 "name": "example",
 "iteration": { "stop": 4 },
 "execution": {
 "script": "echo \"job ${it} executed at `date` @ `hostname`\"",
 "stdout": "job.out.${it}"
 }
 }
]
 },
 {
 "request": "control",
 "command": "finishAfterAllTasksDone"
 }
]

After placing above content in the JSON file, for example jobs.json, we can execute this workflow with:

$ python -m qcg.pilotjob.service --file-path jobs.json

Alternatively, we can use the qcg-pm-service command alias, that is installed with qcg-pilotjob Python package.

$ qcg-pm-service --file-path jobs.json

In the input file, we have placed two requests:

	submit - with job description we want to run

	control - with finishAfterAllTasksDone command, which is required to finish QCG-PilotJob Manager (the service
might listen also on other interfaces, like ZMQ network interface, and must explicitly know when no more requests will
come and service may be stopped.

The result of executing QCG-PilotJob Manager with presented example file should be the same as using the API - the bunch
of output files should be created, as well as .qcgpjm-service- directory with additional files.

Modes of execution

In the previously presented examples we submitted a single CPU applications. However QCG-PilotJob Manager is
intended for use in HPC environments, especially with Slurm scheduling system. The execution on a cluster
is therefore a default mode of execution of QCG-PilotJob.
In order to support users in testing their scenarios before the actual execution on a cluster,
QCG-PilotJob can be also run in a local environment.
Below we present these two modes of execution of QCG-PilotJob.

Scheduling systems

In case of execution via Slurm we submit a request to scheduling system and when requested resources are available,
the allocation is created and our application is run inside it. Of course
we might run our job’s directly in scheduling system without any pilot job mechanism, but we have to remember about
some limitations of scheduling systems such as - maximum number of submitted/executing jobs in the same time, queueing
time (significant for large number of jobs), job array mechanism only for same resource requirement jobs. Generally,
scheduling systems wasn’t designed for handling very large number of small jobs.

To use QCG-PilotJob Manager in HPC environment, we suggest to install QCG-PilotJob Manager via virtual environment in
directory shared among all computing nodes (most of home directories are available from computing nodes). On some
systems, we need to load a proper Python >= 3.6 module before:

$ module load python/3.7.3

Next we can create virtual environment with QCG-PilotJob Manager:

$ python3 -m virtualenv $HOME/qcgpj-venv
$ source $HOME/qcgpj-venv/bin/activate
$ pip install qcg-pilotjob

Now we can use this virtual environment in our jobs. The example job submission script for Slurm scheduling system
that launched application myapp.py that uses QCG-PilotJob Manager API, may look like this:

#SBATCH --job-name=qcgpilotjob-ex
#SBATCH --nodes=2
#SBATCH --tasks-per-node=28
#SBATCH --time=60

module load python/3.7.3
source $HOME/qcgpj-venv/bin/activate

python myapp.py

Of course, some scheduling system might require some additional parameters like:

	--account - name of the account/grant we want to use

	--partition - the partition name where our job should be scheduled

To submit a job with QCG-PilotJob Manager in batch mode with JSON jobs description file, we have to change the last
line to:

python -m qcg.pilotjob.service --file-path jobs.json

Note

Affinity binding supported by Slurm and used by QCG-PilotJob may not work properly when allocation doesn’t contain
entire nodes, so we recommended running QCG-PilotJob on allocations with entire nodes reserved.

Note

Once QCG-PilotJob is submitted via Slurm or QCG middleware, it inherits the execution environment set
by those systems. Some environment variables, such as the location of a shared directory,
may be useful in a user’s tasks. In order to get more detailed information on this topic please see
Execution environments.

Local execution

QCG-PilotJob Manager supports local mode that is suitable for locally testing execution scenarios. In contrast
to execution mode, where QCG-PilotJob Manager is executed in scheduling system allocation, all jobs are launched with
the usage of scheduling system. In the local mode, the user itself can define the size of available resources and
execute it’s scenario on such defined resources without the having access to scheduling system. It’s worth remembering
that QCG-PilotJob Manager doesn’t verify the physically available resources, also the executed jobs are not launched
with any core/processor affinity. Thus the performance of jobs might not be optimal.

The choice between allocation (in scheduling system allocation) or local mode is made automatically by the QCG
PilotJob Manager during the start. If scheduling system environment will be detected, the allocation mode will be
chosen. In other case, the local mode will be active, and if resources are not defined by the user, the default number
of available cores in the system will be taken.

The command line arguments, that also might by passed as argument server_args during instantiating the LocalManager
, related to the local mode are presented below:

	--nodes NODES - the available resources definition; the NODES parameter should have format:

`[NODE_NAME]:CORES[,[NODE_NAME]:CORES]...`

	--envschema ENVSCHEMA - job execution environment; for each job QCG-PilotJob Manager can create environment
similar to the Slurm execution environment

Some examples of resources definition:

	--nodes 4 - single node with 4 available cores

	--nodes n1:2 - single named node with 2 available cores

	--nodes 4,2,2 - three unnamed nodes with 8 total cores

	--nodes n1:4, n2:4, n3:4 - three named nodes with 12 total cores

Parallelism

QCG-PilotJob Manager can handle jobs that require more than a single core. The number of required cores and nodes
is specified with numCores and numNodes parameter of Jobs.add method. The number of required resources
can be specified either as specific values or as a range of resources (with minimum and maximum values), where
QCG-PilotJob Manager will try to assign as much resources from those available in the moment.
The environment of parallel job is prepared for MPI or OpenMP jobs.

MPI

Running MPI programs on HPC systems can be a complex process, as it depends on chosen MPI implementation (OpenMPI,
IntelMPI) and system configuration. Some sites supports launching MPI programs directly with scheduling system client
srun, but on other ones such applications should be launched with standard mpirun command. To get a proper
process binding to the specific cores is even harder, especially where programs are launched with mpirun command.
To support running MPI applications, QCG-PilotJob Manager implements different execution models. The detailed description
about those models can be found in Execution models section. In following example we are using the default model,
where only single process is started by QCG-PilotJob Manager which is typically script that calls mpirun or
mpiexec command. All the environment for the parallel job, such as hosts file, and environment variables are
prepared by QCG-PilotJob Manager. For example to run Quantum Espresso application, the example program may look like this:

from qcg.pilotjob.api.manager import LocalManager
from qcg.pilotjob.api.job import Jobs

manager = LocalManager()

jobs = Jobs().add(
 name='qe-example',
 exec='mpirun',
 args=['pw.x'],
 stdin='pw.benzene.scf.in',
 stdout='pw.benzene.scf.out',
 modules=['espresso/5.3.0', 'mkl', 'impi', 'mpich'],
 numCores=8)

job_ids = manager.submit(jobs)
manager.wait4(job_ids)

manager.finish()

As we can see in the example, we run a single program mpirun which is responsible for setup a proper, parallel
environment for the destination program and spawn the Quantum Espresso executables (pw.x).

In the example program we used some additional options of Jobs.add method:

	stdin - points to the file that content should be sent to job’s standard input

	modules - environment modules that should be loaded before job start

	numCores - how much cores should be allocated for the job

The JSON job description file for the same example is presented below:

[
 {
 "request": "submit",
 "jobs": [
 {
 "name": "qe-example",
 "execution": {
 "exec": "mpirun",
 "args": ["pw.x"],
 "stdin": "pw.benzene.scf.in",
 "stdout": "pw.benzene.scf.out",
 "modules": ["espresso/5.3.0", "mkl", "impi", "mpich"]
 },
 "resources": {
 "numCores": { "exact": 8 }
 }
 }
]
 },
 {
 "request": "control",
 "command": "finishAfterAllTasksDone"
 }
]

OpenMP

For OpenMP programs (shared memory parallel model), where there is one process that spawns many threads on the same
node, we need to use special option model with threads value.
To test execution of OpenMP program we need to compile a sample application:

$ wget https://computing.llnl.gov/tutorials/openMP/samples/C/omp_hello.c
$ gcc -Wall -fopenmp -o omp_hello omp_hello.c

Now we can launch this application with QCG-PilotJob Manager:

from qcg.pilotjob.api.manager import LocalManager
from qcg.pilotjob.api.job import Jobs

manager = LocalManager()

jobs = Jobs().add(
 name='openmp-example',
 exec='omp_hello',
 stdout='omp.out',
 model='threads',
 numCores=8,
 numNodes=1)

job_ids = manager.submit(jobs)
manager.wait4(job_ids)

manager.finish()

The omp.out file should contain eight lines with Hello world from thread =. It is worth to remember, that OpenMP
applications can operate only on single node, so adding numNodes=1 might be necessary in case where there are more
than single node in available resources.

The equivalent JSON job description file for given example is presented below:

[
 {
 "request": "submit",
 "jobs": [
 {
 "name": "openmp-example",
 "execution": {
 "exec": "omp_hello",
 "stdout": "omp.ou",
 "model": "threads"
 },
 "resources": {
 "numCores": { "exact": 8 },
 "numNodes": { "exact": 1 }
 }
 }
]
 },
 {
 "request": "control",
 "command": "finishAfterAllTasksDone"
 }
]

QCG-PilotJob Manager options

The list of all options can be obtained by running either the wrapper command:

$ qcg-pm-service --help

or directly call the Python module:

$ python -m qcg.pilotjob.service –help

Those options can be passed to QCG-PilotJob Manager in batch mode as command line arguments,
or as an argument server_args during instantiating the LocalManager class.

The full list of currently supported options is presented below.

$ qcg-pm-service --help
 usage: service.py [-h] [--net] [--net-port NET_PORT]
 [--net-pub-port NET_PUB_PORT] [--net-port-min NET_PORT_MIN]
 [--net-port-max NET_PORT_MAX] [--file]
 [--file-path FILE_PATH] [--wd WD] [--envschema ENVSCHEMA]
 [--resources RESOURCES] [--report-format REPORT_FORMAT]
 [--report-file REPORT_FILE] [--nodes NODES]
 [--log {critical,error,warning,info,debug,notset}]
 [--system-core] [--disable-nl] [--show-progress]
 [--governor] [--parent PARENT] [--id ID] [--tags TAGS]
 [--slurm-partition-nodes SLURM_PARTITION_NODES]
 [--slurm-limit-nodes-range-begin SLURM_LIMIT_NODES_RANGE_BEGIN]
 [--slurm-limit-nodes-range-end SLURM_LIMIT_NODES_RANGE_END]
 [--slurm-resources-file SLURM_RESOURCES_FILE]
 [--resume RESUME] [--enable-proc-stats] [--enable-rt-stats]
 [--wrapper-rt-stats WRAPPER_RT_STATS]
 [--nl-init-timeout NL_INIT_TIMEOUT]
 [--nl-ready-treshold NL_READY_TRESHOLD] [--disable-pub]
 [--nl-start-method NL_START_METHOD]

 optional arguments:
 -h, --help show this help message and exit
 --net enable network interface
 --net-port NET_PORT port to listen for network interface (implies --net)
 --net-pub-port NET_PUB_PORT
 port to publish events (implies --net)
 --net-port-min NET_PORT_MIN
 minimum port range to listen for network interface if
 exact port number is not defined (implies --net)
 --net-port-max NET_PORT_MAX
 maximum port range to listen for network interface if
 exact port number is not defined (implies --net)
 --file enable file interface
 --file-path FILE_PATH
 path to the request file (implies --file)
 --wd WD working directory for the service
 --envschema ENVSCHEMA
 job environment schema [auto|slurm]
 --resources RESOURCES
 source of information about available resources
 [auto|slurm|local] as well as a method of job
 execution (through local processes or as a Slurm sub
 jobs)
 --report-format REPORT_FORMAT
 format of job report file [text|json]
 --report-file REPORT_FILE
 name of the job report file
 --nodes NODES configuration of available resources (implies
 --resources local)
 --log {critical,error,warning,info,debug,notset}
 log level
 --system-core reserve one of the core for the QCG-PJM
 --disable-nl disable custom launching method
 --show-progress print information about executing tasks
 --governor run manager in the governor mode, where jobs will be
 scheduled to execute to the dependant managers
 --parent PARENT address of the parent manager, current instance will
 receive jobs from the parent manaqger
 --id ID optional manager instance identifier - will be
 generated automatically when not defined
 --tags TAGS optional manager instance tags separated by commas
 --slurm-partition-nodes SLURM_PARTITION_NODES
 split Slurm allocation by given number of nodes, where
 each group will be controlled by separate manager
 (implies --governor)
 --slurm-limit-nodes-range-begin SLURM_LIMIT_NODES_RANGE_BEGIN
 limit Slurm allocation to specified range of nodes
 (starting node)
 --slurm-limit-nodes-range-end SLURM_LIMIT_NODES_RANGE_END
 limit Slurm allocation to specified range of nodes
 (ending node)
 --slurm-resources-file SLURM_RESOURCES_FILE
 path to the file with slurm resources description
 --resume RESUME path to the QCG-PilotJob working directory to resume
 --enable-proc-stats gather information about launched processes from
 system
 --enable-rt-stats gather exact start & stop information of launched
 processes
 --wrapper-rt-stats WRAPPER_RT_STATS
 exact start & stop information wrapper path
 --nl-init-timeout NL_INIT_TIMEOUT
 node launcher init timeout (s)
 --nl-ready-treshold NL_READY_TRESHOLD
 percent (0.0-1.0) of node launchers registered when
 computations should start
 --disable-pub disable status publisher interface
 --nl-start-method NL_START_METHOD
 method to start node launchers (ssh,slurm - default)

Key concepts

Modules

QCG-PilotJob Manager consists of the following internal functional modules:

	Queue - the queue containing jobs waiting for resources,

	Scheduler algorithm - the algorithm selecting jobs and assigning resources to them.

	Registry - the permanent registry containing information about all (current and historical) jobs in the system,

	Executor - a module responsible for execution of jobs for which resources were assigned.

Queue & scheduler

All the jobs submitted to the QCG-PilotJob Manger system are placed in the queue in the order of they arrival. The scheduling algorithm of QCG-PilotJob Manager works on that queue. The goal of the Scheduler is to determine the order of execution and amount of resources assigned to individual jobs to maximise the throughput of the system. The algorithm is based on the following set of rules:

	Jobs being in the queue are processed in the FIFO manner,

	For every feasible (ready for execution) job the maximum (possible) amount of requested resources is determined. If the amount of allocated resources is greater than the minimal requirements requested by the user, the resources are exclusively assigned to the job and the job is removed from the queue to be executed.

	If the minimal resource requirements are greater than total available resources the job is removed from the queue with the FAILED status.

	If the amount of resources doesn’t allow to start the job, it stays in the queue with the QUEUED status to be taken into consideration again in the next scheduling iteration,

	Jobs waiting for successful finish of any other job, are not taken into consideration and stay in the queue with the QUEUED state,

	Jobs for which dependency constraints can not be met, due to failure or cancellation of at least one job which they depend on, are marked as OMITTED and removed from the queue,

	If the algorithm finishes processing the given job and some resources still remain unassigned the whole procedure is repeated for the next job.

Executors

QCG-PilotJob Manager module named Executor is responsible for execution and control of jobs by interacting with the cluster resource management system. The current implementation contains three different methods of executing jobs:

	as a local process - this method is used when QCG-PilotJob Manager either has been run outside a Slurm allocation or when parameter --resources local has been defined,

	through internal distributed launcher service - currently used only in Slurm allocation for single core jobs,

	as a Slurm sub job - the job is submitted to the Slurm to be run in current allocation on scheduled resources.

The modular approach allows for relatively easy integration also with other queuing systems.
The QCG-PilotJob Manager and all jobs controlled by it are executed in a single allocation.
To hide this fact from the individual job and to give it an impression that it is executed directly by the queuing
system QCG-PilotJob overrides some of the environment settings. More on this topic is available in
Execution environments

Execution environments

In order to give an impression that an individual QCG-PilotJob task is executed directly by the queuing system
a set of environment variables, typically set by the queuing system, is overwritten and passed to the job.
These variables give the application all typical information about a job it can be interested in,
e.g. the amount of assigned resources. In case of parallel application an appropriate machine file
is created with a list of resources for each task. Additionally to unify the execution regardless of the
queuing system a set of variables independent from a queuing system is defined and passed to tasks.

Slurm execution environment

For the SLURM scheduling system, an execution environment for a single job contains the following set of variables:

	SLURM_NNODES - a number of nodes

	SLURM_NODELIST - a list of nodes separated by the comma

	SLURM_NPROCS - a number of cores

	SLURM_NTASKS - see SLURM_NPROCS

	SLURM_JOB_NODELIST - see SLURM_NODELIST

	SLURM_JOB_NUM_NODES - see SLURM_NNODES

	SLURM_STEP_NODELIST - see SLURM_NODELIST

	SLURM_STEP_NUM_NODES - see SLURM_NNODES

	SLURM_STEP_NUM_TASKS - see SLURM_NPROCS

	SLURM_NTASKS_PER_NODE - a number of cores on every node listed in SLURM_NODELIST separated by the comma,

	SLURM_STEP_TASKS_PER_NODE - see SLURM_NTASKS_PER_NODE

	SLURM_TASKS_PER_NODE - see SLURM_NTASKS_PER_NODE

QCG Execution environment

To unify the execution environment regardless of the queuing system the following variables are set:

	QCG_PM_NNODES - a number of nodes

	QCG_PM_NODELIST- a list of nodes separated by the comma

	QCG_PM_NPROCS - a number of cores

	QCG_PM_NTASKS - see QCG_PM_NPROCS

	QCG_PM_STEP_ID - a unique identifier of a job (generated by QCG-PilotJob Manager)

	QCG_PM_TASKS_PER_NODE - a number of cores on every node listed in QCG_PM_NODELIST separated by the comma

	QCG_PM_ZMQ_ADDRESS - an address of the network interface of QCG-PilotJob Manager (if enabled)

Execution models

The QCG-PJM service manages individual cores, so it assigns specific cores to
the tasks. From the performance perspective, binding tasks to the cores is more
efficient as it separates tasks from each other.

Note

To support CPU binding, the service must have information about physical
available cores in the system. This information is provided by SLURM in
a created allocation, but it is not available in case of logical resources, i.e.
where user defines virtual cores and nodes. So currently the binding is
supported only when the QCG-PJM service is run inside a SLURM allocation.

The binding of single core tasks is achieved with:

	Custom Launching Agent, that uses taskset command,

	SLURM built-in mechanism based on --cpu-bind option of the srun command.

Currently, the parallel tasks that require more than one core are launched
only by the srun or mpirun commands. The mask_cpu flag of the
srun’s `--cpu-bind parameter will contain the CPU masks for all
allocated nodes separated with the comma. When mpirun command is used to
launch parallel task, either the --rankfile parameter is used for OpenMPI
model or I_MPI_PIN_PROCESSOR_LIST environment variable for Intel MPI
model.

Additionally, for all tasks launched by the Slurm with binding supported, the
QCG_PM_CPU_SET environment variable will be available and set with core
identifiers separated with comma.

To support process affinity for different parallel applications, QCG-PJM supports
different execution models. Currently the following models are available:

	default - in this model only a single process is launched within the allocation, which is prepared based on task’s resource requirements, the allocation description can be found in environment variables, such as:
- SLURM_NODELIST - list of allocated nodes separated by comma character
- SLURM_NTASKS - total number of cores
- SLURM_TASKS_PER_NODE - number of allocated cores on following nodes, where each element can be in a form NODE_NAME (a single core on a node) or NODE_NAME(xNUM_OF_CORES) (many cores on a single node)
- QCG_PM_CPU_SET - list of core identifiers on following nodes separated by a comma character

	threads - is designed for running OpenMP tasks on a single node, the process is started with the srun command with the --cpus-per-task parameter set according to a number of cores defined in resource requirements

	openmpi - the processes are started with the mpirun command with rankfile created based on task’s resource requirements

	intelmpi - the processes are started with the mpirun command (from the IntelMPI distribution) with defined multiple components, where each component describing execution node, contains -host element and I_MPI_PIN_PROCESSOR_LIST arguments set according to the allocated resources

	srunmpi - the processes are started with the srun command with --cpu-bind parameter set according to the allocated resources; this model should be used only on sites that have penMPI/IntelMPI/Slurm environments configured properly.

The openmpi and srunmpi provide additional configuration options that that can be defined in the element model_opts. Currently the following options are supported:

	mpirun (str) - path to the mpirun command that should be used to launch applications, if not defined the default command (should be in the PATH environment variable) is used

	mpirun_args (list) - additional arguments that should be passed to the mpirun command

We recommend usage of srunmpi model for MPI applications on HPC sites wherever srun is properly configured to
execute MPI codes.

Note

It is important to define for the intelmpi, srunmpi and openmpi models
appropriate IntelMPI/OpenMPI modules in executable/modules element of the job description
or to load them before staring QCG-PJM.

Examples

	To use different MPI implementation applications in a single workflow we can define appropriate options

[
 {
 "request": "submit",
 "jobs": [
 {
 "name": "intelmpi_task",
 "execution": {
 "exec": "/home/user/my_intelmpi_application",
 "model": "intelmpi",
 "model_opts": {
 "mpirun": "/opt/exp_soft/local/skylake/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpirun"
 },
 "modules": ["impi"]
 },
 "resources": {
 "numCores": {
 "exact": 8
 }
 }
 },
 {
 "name": "openmpi_task",
 "execution": {
 "exec": "/home/user/my_openmpi_application",
 "model": "openmpi",
 "model_opts": {
 "mpirun": "/opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/bin/mpirun",
 "mpirun_args": ["--mca", "rmaps_rank_file_physical", "1"]
 },
 "modules": ["openmpi/4.1.0_gcc620"]
 },
 "resources": {
 "numCores": {
 "exact": 8
 }
 }
 }
]
 }
]

With this input, QCG-PilotJob service will launch task’s intelmpi_task
application /home/user/my_intelmpi_application with the mpirun command path
/opt/exp_soft/local/skylake/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpirun
and additionally it will load impi module. The second task’s openmpi_task
application /home/user/my_openmpi_application will be launched with the command
/opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/bin/mpirun with additional
arguments --mca rmaps_rank_file_physical 1 and the module
openmpi/4.1.0_gcc620 loaded before the application’s start.

The description for the API looks similar:

jobs = Jobs()
jobs.add(name = 'intelmpi_task', exec = '/home/user/my_intelmpi_application', numCores = { 'exact': 4 }, model = 'intelmpi', model_opts = { 'mpirun': '/opt/exp_soft/local/skylake/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpirun' }, modules = ['impi'])
jobs.add(name = 'openmpi_task', exec = '/home/user/my_openmpi_application', numCores = { 'exact': 4 }, model = 'openmpi', model_opts = { 'mpirun': '/opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/bin/mpirun', 'mpirun_args': ['--mca', 'rmaps_rank_file_physical', '1']}, modules = ['openmpi/4.1.0_gcc620'])

	Instead of compiled application, it is possible to use Bash script from which the application is called later. It gives us more possibilities to configure the environment for the application. For example using the following input description:

[
 {
 "request": "submit",
 "jobs": [
 {
 "name": "openmpi_task",
 "execution": {
 "exec": "bash",
 "args": ["-l", "./app_script.sh"],
 "model": "openmpi",
 },
 "resources": {
 "numCores": {
 "exact": 8
 }
 }
 }
]
 }
]

The script app_script.sh could look like the following:

#!/bin/bash

module load openmpi/4.1.0_gcc620
/home/user/my_openmpi_application

Warning

It is important to remember, that for the parallel task with a model different that default,
there will be as many instances created of the script as the required number of cores.
Thus the actions that should be executed only once per all application’s processes should be enclosed
in the following block:

if ["x$OMPI_COMM_WORLD_RANK" == "x0"] || ["x$PMI_RANK" == "x0"]; then
 # actions in this block will be executed only for rank 0 of OpenMPI/IntelMPI applications
endif

File based interface

The File interface allows a static sequence of commands (called requests) to be read from a file a
nd performed by the system.

File interface usage

To use QCG-PilotJob Manager with the File interface we should call either the wrapper command:

$ qcg-pm-service

or directly call the Python module:

$ python -m qcg.pilotjob.service

with the --file-path FILE_PATH parameter, where FILE_PATH is a path to the requests file.
For example, the command:

$ qcg-pm-service --file-path reqs.json

will run QCG-PilotJob Manager on requests written in reqs.json file.

Requests file

The requests file is a JSON format file containing a sequence of commands (requests).
The file must be staged into the working directory of the QCG-PilotJob Manager job and
passed as an argument of this job invocation. The requests are read in an order they are placed in the file.
In the file mode, QCG-PilotJob Manager outputs all responses to the log file.

Commands

The request is a JSON dictionary with the request key containing a request command.
The additional data format depends on a specific request command. The following commands are currently supported.

submit

Submit a list of jobs to be processed by the system. The jobs key must contain a list of formalised
descriptions of jobs.

The Job description is a dictionary with the following keys:

	name (required) String - job name, must be unique among all other submitted jobs

	iteration (optional) Dict - defines a loop for iterative jobs, the either start (optional)
and stop or values keys must be defined; the total number of iterations will be stop - start
(the last index of the sub-job will be stop - 1) in case of boundary definition or lenght of values array

	execution (required) Dict - execution description with the following keys:

	exec (optional) String - executable name (if available in $PATH) or absolute path to the executable,

	args (optional) Array of String - list of arguments that will be passed to
the executable,

	script (optional) String - commands for bash environment, mutually exclusive with exec and args

	env (optional) Dict (String: String) - environment variables that will
be appended to the execution environment,

	wd (optional) String - a working directory, if not defined the
working directory (current directory) of QCG-PilotJob Manager will be used. If
the path is not absolute it is relative to the QCG-PilotJob Manager
working directory. If the directory pointed by the path does not exist, it is created before
the job starts.

	stdin, stdout, stderr (optional) String - path to the
standard input , standard output and standard error files respectively.

	modules (optional) Array of String - the list of environment modules that should be
loaded before start of the job

	venv (optional) String - the path to the virtual environment inside in job should be started

	model (optional) String - the model of execution, currently following values are supported:

	threads - job’s iteration is launched with srun command on a single node with as many cpus per task as declared in resources element

	intelmpi - job’s iteration is launched with mpirun command (or command defined in element model_opts/mpirun) with the IntelMPI set of arguments, additional arguments for mpirun command can be declared in element model_opts/mpirun_args

	openmpi - job’s iteration is launched with mpirun command (or command defined in element model_opts/mpirun) with the OpenMPI set of arguments, additional arguments for mpirun command can be declared in element model_opts/mpirun_args

	srunmpi - job’s iteration is launched with srun command on as many number of nodes and cores as declared in resources element

	default - job’s iteration is launched as a single process with environment variable QCG_PM_CPU_SET containing allocated cores on a set of declared nodes, the allocated nodes can be obtained from QCG_PM_NODELIST environment variables

	model_opts (optional) Dict - the additional arguments used in some of the models, currently the following keys are supported

	mpirun (optional) String - the path to the command to be used in srunmpi and openmpi models

	mpirun_args (optional) Array of String - the additional arguments that should be passed to the mpirun command in srunmpi and openmpi models

	resources (optional) Dict - resource requirements, a dictionary with the following keys:

	numCores (optional) Dict - number of cores,

	numNodes (optional) Dict- number of nodes,

The specification of numCores/numNodes elements may contain the following keys:

	exact (optional) Number - the exact number of cores,

	min (optional) Number - minimal number of cores,

	max (optional) Number - maximal number of cores,

	scheduler (optional) Dict - the type of resource iteration scheduler, the key name specify type of
scheduler and currently the maximum-iters and split-into names are supported, the optional params
dictionary specifies the scheduler parameters (the exact and min / max are mutually exclusive).

If resources is not defined, the numCores with exact set to 1 is taken as the default value.

The numCores element without numNodes specifies requested number of cores on any number of nodes.
The same element used along with the numNodes determines the number of cores on each requested node.

The scheduler optional key defines the iteration resources scheduler. It is futher described in
section Iteration resources schedulers.

	dependencies (optional) Dict - a dictionary with the following items:

	after (required) Array of String - list of names of jobs that must finish before the job can be executed.
Only when all listed jobs finish (with SUCCESS status) the current job is taken into consideration by
the scheduler and can be executed.

The job description may contain variables (except the job name, which cannot contain any variable or
special character) in the format:

${ variable-name }

which are replaced with appropriate values by QCG-PilotJob Manager.

The following set of variables is supported during a request validation:

	rcnt - a request counter that is incremented with every request
(for iterative sub-jobs the value of this variable is the same)

	uniq - a unique identifier of each request (each iterative sub-job has its own unique identifier)

	sname - a local cluster name

	date - a date when the request was received

	time - a time when the request was received

	dateTime - date and time when the request was received

	it - an index of a current sub-job (only for iterative jobs)

	jname - a final job name after substitution of all other used variables to their values

The following variables are handled when resources has been already allocated and before the start of job execution:

	root_wd - a working directory of QCG-PilotJob Manager, the parent directory for all
relative job’s working directories

	ncores - a number of allocated cores for the job

	nnodes - a number of allocated nodes for the job

	nlist - a list of nodes allocated for the job separated by the comma

The sample submit job request is presented below:

{
 "request": "submit",
 "jobs": [
 {
 "name": "msleep2",
 "execution": {
 "exec": "/bin/sleep",
 "args": [
 "5s"
],
 "env": {},
 "wd": "sleep.sandbox",
 "stdout": "sleep2.${ncores}.${nnodes}.stdout",
 "stderr": "sleep2.${ncores}.${nnodes}.stderr"
 },
 "resources": {
 "numCores": {
 "exact": 2
 }
 }
 }
]
}

The example response is presented below:

{
 "code": 0,
 "message": "1 jobs submitted",
 "data": {
 "submitted": 1,
 "jobs": [
 "msleep2"
]
 }
}

listJobs

Return a list of registered jobs. No additional arguments are needed.
The example list jobs request is presented below:

{
 "request": "listJobs"
}

The example response is presented below:

{
 "code": 0,
 "data": {
 "length": 1,
 "jobs": {
 "msleep2": {
 "status": "QUEUED",
 "inQueue": 0
 }
 }
 }
}

jobStatus

Report current status of a given jobs. The jobNames key must contain a list of job names for which status
should be reported. A single job may be in one of the following states:

	QUEUED - a job was submitted but there are no enough available resources

	EXECUTING - a job is currently executed

	SUCCEED - a finished with 0 exit code

	FAILED - a job could not be started (for example there is no executable) or a job finished with non-zero exit
code or a requested amount of resources exceeds a total amount of resources,

	CANCELED - a job has been cancelled either by a user or by a system

	OMITTED - a job will never be executed due to the dependencies (a job which this job depends
on failed or was cancelled).

The example job status request is presented below:

{
 "request": "jobStatus",
 "jobNames": ["msleep2"]
}

The example response is presented below:

{
 "code": 0,
 "data": {
 "jobs": {
 "msleep2": {
 "status": 0,
 "data": {
 "jobName": "msleep2",
 "status": "SUCCEED"
 }
 }
 }
 }
}

The status key at the top, job’s level contains numeric code that represents
the operation return code - 0 means success, where other values means problem
with obtaining job’s status (e.g. due to the missing job name).

jobInfo

Report detailed information about jobs. The jobNames key must contain a list of job names for
which information should be reported.

The example job status request is presented below:

{
 "request": "jobInfo",
 "jobNames": ["msleep2", "echo"]
}

The example response is presented below:

 {
 "code": 0,
 "data": {
 "jobs": {
 "msleep2": {
 "status": 0,
 "data": {
 "jobName": "msleep2",
 "status": "SUCCEED",
 "runtime": {
 "allocation": "LAPTOP-CNT0BD0F[0:1]",
 "wd": "/sleep.sandbox",
 "rtime": "0:00:02.027212",
 "exit_code": "0"
 },
 "history": "\n2020-06-08 12:56:06.789757: QUEUED\n2020-06-08 12:56:06.789937: SCHEDULED\n2020-06-08 12:56:06.791251: EXECUTING\n2020-06-08 12:56:08.826721: SUCCEED"
 }
 }
 }
 }
}

control

Controls behaviour of QCG-PilotJob Manager. The specific command must be placed in the``command`` key.
Currently the following commands are supported:
- finishAfterAllTasksDone This command tells QCG-PilotJob Manager to wait until all submitted jobs finish.

By default, in the file mode, the QCG-PilotJob Manager application finishes as soon as all requests are
read from the request file.

The sample control command request is presented below:

{
 "request": "control",
 "command": "finishAfterAllTasksDone"
}

cancelJob

Cancel a jobs with a list of their names specified in the jobNames key. Currently this operation is not supported.

removeJob

Remove a jobs from the registry. The list of names of a jobs to be removed must be placed in the jobNames key.
This request can be used in case when there is a need to submit another job with the same name - because all the
job names must be unique a new job cannot be submitted with the same name unless the previous one is removed
from the registry.
The example remove job request is presented below:

{
 "request": "removeJob",
 "jobNames": ["msleep2"]
}

The example response is presented below:

{
 "data": {
 "removed": 1
 },
 "code": 0
}

resourcesInfo

Return current usage of resources. The information about a number of
available and used nodes/cores is reported. No additional arguments are needed.
The example resources info request is presented below:

{
 "request": "resourcesInfo"
}

The example response is presented below:

{
 "data": {
 "total_cores": 8,
 "total_nodes": 1,
 "used_cores": 2,
 "free_cores": 6
 },
 "code": 0
}

finish

Finish the QCG-PilotJob Manager application immediately. The jobs being currently executed are killed.
No additional arguments are needed.

The example finish command request is presented below:

{
 "request": "finish"
}

Executor API

Beta

Executor API is an alternative, simplified programming interface for QCG-PilotJob.
In some aspects it mimics an interface of concurrent.futures.Executor and may therefore
be appealing to many Python programmers. However, since this interface is still under development,
it is dedicated mostly for less-demanding use-cases.

Executor API is based on the basic API of QCG-PilotJob and therefore it inherits core elements
from that API. On the other hand, in order to support definition of the common execution scenarios, many elements of
basic API have been hidden behind simplified interface.

Installation

Executor API can be installed from PyPi, with the following command:

$ pip install qcg-pilotjob-executor-api

Usage

Before we present more details about the usage of Executor API, let’s outline a minimal working example:

	1
2
3
4
5
6

	from qcg.pilotjob.executor_api.qcgpj_executor import QCGPJExecutor
from qcg.pilotjob.executor_api.templates.basic_template import BasicTemplate

with QCGPJExecutor() as e:
 f = e.submit(BasicTemplate.template, name='tj', exec='date')
 f.result()

This example shows how Executor API can be used to run specific command, here date, within a QCG-PilotJob task.

The interesting part starts on the 4th line. Here we create QCGPJExecutor, which is an entry point to
QCG-PilotJob. Actually, behind the scenes QCGPJExecutor initialises the QCG-PilotJob manager service
and it plays a role of a proxy to its methods.

Once created, QCGPJExecutor allows us to submit tasks for the execution within QCG-PilotJob.
An example invocation of the submit method is shown on the 5th line. The first and the most interesting argument
to this method is template. The template is actually a Callable that returns a tuple consisting of
string and dictionary. The string need to be a QCG-PilotJob submit request description written
in a JSON format with optional placeholders for substitution of specific parameters,
while the dictionary may be used to set default values for placeholders.
The next parameters of the method are optional and dependent on the selected template -
their role is to provide values for the actual substitution of placeholders.

In the example above we use a predefined template called BasicTemplate.template, which requires
only two parameters to be provided, namely name and exec.

The submit method returns a QCGPJFuture object, which provides methods associated with the execution
of submission. For instance, the invocation f.result() in the example above, blocks processing until the task
is not completed and then returns the status of its execution.

QCGPJExecutor

QCGPJExecutor is an approximate implementation of the concurrent.futures.Executor interface, but instead of
execution of functions using threads or multiprocessing module like it takes place in case of python build-in
executors, here we execute QCG-PilotJob’s tasks.

Technically, QCGPJExecutor is a kind of proxy over the QCG-PilotJob manager and at the expense
of some flexibility of the covered service, it provides simpler interface.
QCGPJExecutor’s constructor can be invoked without any parameters and then it is started with default settings.

However, in order to enable easy configuration of the commonly changed settings,
several optional parameters are provided. One of such parameters is resources which may be useful for
testing QCG-PilotJob on a local laptop.

QCGPJExecutor implements ContextManager’s methods that allow for its easy usage with the with statements.
When the with statement is used, python will automatically take care of releasing QCGPJExecutor’s resources.

When the QCGPJExecutor is constructed outside the with statement, it needs to be released manually,
using the shutdown method.

For the full reference of the QCGPJExecutor module see qcg.pilotjob.executor_api.qcgpj_executor.

Submission of tasks

The key method offered by QCGPJExecutor is submit. The call of this method adds a new task (or tasks, depending on
the usage scenario) to the QCG-PilotJob’s queue to be executed once resources are available and dependencies satisfied.
The method takes the following arguments:

	
	fn :

	a callable that returns a tuple representing a template. The first element of the tuple should be a
string containing a QCG-PilotJob submit request expressed in a JSON format compatible
with the QCG-PilotJob’s interface. The string can include placeholders
(identifiers preceded by $ symbol) that are the target for substitution.
The second element of a tuple is dictionary which may be used to assign default values for
substitution of selected placeholders.

	
	*args :

	a set of dicts which contain parameters that will be used to substitute placeholders
defined in the template.

	
	**kwargs :

	a set of keyword arguments that will be used to substitute placeholders defined in
the template.

Note: In the process of substitution **kwargs overwrite *args and *args overwrite defaults

Example template

In order to understand how to use or create templates, possibly the best option is to look at the example.
BasicTemplate class, which is delivered with the QCG-PilotJob Executor API, provides a predefined
template method that was already used in the example above. It is a simple example, but can give a good overview.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	class BasicTemplate(QCGPJTemplate):
 @staticmethod
 def template() -> Tuple[str, Dict[str, Any]]:
 template = """
 {
 'name': '${name}',
 'execution': {
 'exec': '${exec}',
 'args': ${args},
 'stdout': '${stdout}',
 'stderr': '${stderr}'
 }
 }
 """

 defaults = {
 'args': [],
 'stdout': 'stdout',
 'stderr': 'stderr'
 }

 return template, defaults

Here, accordingly with the expectations, the function returns template and defaults.
The template is a JSON dictionary representing a QCG-PilotJob submit request. What is
important, it includes a set of ${} placeholders. These placeholders may be substituted by the parameters
provided to the submit method. For some of the placeholders, default values are already
predefined in a defaults dictionary, and these parameters don’t need to be substituted
if there is no concrete reason for this. The rest of placeholders, namely {name} and {exec}, don’t have
default values and therefore they need to be substituted by parameters provided to the submit.

Let’s see how example invocations of the submit method for this template can look like:

e.submit(BasicTemplate.template, name='tj', exec='date')
e.submit(BasicTemplate.template, name='tj', exec='sleep', args=['10'])

QCGPJFuture

The submit method returns QCGPJFuture object, which plays a role of a handler for the submission.
Thus, using the returned QCGPJFuture object it is possible to make queries to check if
the submitted task has been finished, with the done method,
or request the cancellation of an execution with the cancel method. As it was presented in the
attached example, it is also possible to invoke blocking wait until the task is finished with the result method.
For the full reference of methods provided by QCGPJFuture see qcg.pilotjob.executor_api.qcgpj_future.

Iteration resources schedulers

The aim of iteration resources schedulers is to optimise resources usage for iterative tasks. To this end,
the schedulers assign an exact number of resources based on single iteration resource requirements
described as minimum number of resources and number of available resources in allocation.
What is important, the job’s resource requirements for iterative tasks do not have to be changed
for different allocations.
The resource requirements can apply to both: number of cores and number of nodes specifications.

Currently, two schedulers are implemented:

	maximum-iters

	split-into

maximum-iters

The iteration resource scheduler for maximizing resource usage. The maximum-iters iteration resource scheduler is
trying to launch as many iterations in the same time on all available resources. In case where number of iterations
exceeds the number of available resources, the maximum-iters schedulers splits iterations into steps minimizing
this number, and allocates as many resources as possible for each iteration inside step. The max attribute
of resource specification is not allowed when maximum-iters scheduler is used.

split-into

The iteration resource scheduler for partitioning available resources. This simple iteration resource scheduler splits
all available resources into given partitions, and each iteration will be executed inside whole single partition.

Resuming prematurely interrupted computations

General

The QCG-PilotJob Manager service implements mechanism for resuming prematurely interrupted computations. All incoming
job submission requests, as well as the finished job iterations are recorded to allow resuming job execution. The
current state is placed in files track.* in auxiliary directory (the .qcgpjm-service-* in the working
directory). It is worth to mention that started, but not finished job iterations will be started again, so if they
don’t implement automatic computation checkpointing, they will re-start from begin.

Invocation

To resume the QCG-PilotJob Manager with previous jobs, the resume command line option must be used with path either
direct to the auxiliary QCG-PilotJob Manager directory or to the working directory where auxiliary directory is placed (
in case where there are many auxiliary directories in the working directory, the last modified one will be automatically
selected).

Note

Currently during the resume operation, non of previously used command line option will be re-used. So if for example
the working directory has been specified in original QCG PilotJob Manager start, the same working directory should
be used during resuming.

Example invocation:

qcg-pm-service --wd prev_work_dir --resume prev_work_dir/.qcgpjm-service-LAPTOP-CNT0BD0F.5091

Operation

After resume, the QCG-PilotJob Manager will re-use the pointed auxiliary directory, so all log files, current tracking
status and job reports will be appended to the previous files. Thus there is no problem to resume, already resumed
computations.

Issues

Currently the resume mechanism is not supported in resource partitioning mode.

Performance statistics

The QCG-PilotJob service provides tools which, based on service logs, allow you
to analyse the efficiency of resource use. Please note that the current
implementation is the first version of these tools and may not be free from
errors.

Performance measurements and data collection

Due to the potential load on the QCG-PilotJob service and its asynchronous
nature, in order to accurately measure its performance it is necessary to use
external metrics to determine when a particular job started and ended. In order
to generate such metrics, a wrapper program was created in the C language. The
role of this program is to register the moment when the application indicated
by the arguments started, and to register the moment when it ended. The
collected data is sent through a named pipe (data sent through such a
communication channel is not stored in the file system, so the file system
performance does not affect the efficiency of communication) to the
QCG-PilotJob service agent running on the local compute node. When all
calculations are completed, the collected data are written to the QCG-PilotJob
service logs.

Note that currently all parallel tasks (requiring more than one
core) are started using the “srun” command (provided by the Slurm queue
system). Therefore, the wrapper used with the “srun” command will register the
moment the “srun” command itself is run, and not the target processes of the
parallel application. Therefore, please note that the metrics and analysis
presented here do not take into account the latency of the queueing system
itself

Wrapper installation

As the wrapper itself is written in C, it requires compilation on the target
computing cluster.

Source code (qcg_pj_launch_wrapper.c) can be downloaded from the develop branch of QCG-PilotJob project repository on
GitHub [https://github.com/vecma-project/QCG-PilotJob/tree/develop/], e.g:

$ wget https://raw.githubusercontent.com/vecma-project/QCG-PilotJob/develop/utils/qcg_pj_launch_wrapper.c

and then compiled using the compiler of your choice:

$ gcc -Wall -o qcg_pj_launch_wrapper qcg_pj_launch_wrapper

or

$ icc -Wall -o qcg_pj_launch_wrapper qcg_pj_launch_wrapper

The compiled program should be placed in a path accessible from all compute nodes.

Launch of QCG-PilotJob service with collection of external metrics

In order to collect external metrics related to application execution time, two
arguments must be passed when starting the QCG-PilotJob service:

	--enable-rt-stats - enabling the collection of statistics

	--wrapper-rt-stats - indication of wrapper location (the path to the installed wrapper program)

An example call to the QCG-PilotJob service with the job description placed in
a JSON file and the collection of external metrics looks like this:

$ qcg-pm-service --wd out-dir --file-path mpi_iter_mixed.json --enable-rt-stats --wrapper-rt-stats /home/piotrk/runtime_wrapper/qcg_pj_launch_wrapper

In this case, all logs and metrics will be in the ‘out-dir’ subdirectory when
the calculation is complete.

Analysis tool - qcg-pm-report

The QCG-PilotJob package provides a qcg-pm-report program to enable performing
a number of analyses based on the data collected by the wrapper and available
in a working directory after the QCG-PilotJob’s run. It allows to assess the
performance of the entire workflow, elementary tasks as well as to get
information about resources utilisation.

A description of the available commands of qcg-pm-report is given below.

stats

The stats command displays basic metrics about the executed workflow as a
whole, such as:

	total jobs, failed jobs - number of running jobs and number of failed jobs

	total cores, total nodes - number of available nodes and total number of available cores on all nodes

	service started, service finished, service runtime - the start and end time of the QCG-PilotJob service and the difference between these dates; note that the start time of the QCG-PilotJob service may be slightly delayed with respect to the start time of the job in the Slurm service, as the time reported by the queue system does not take into account the time associated with loading the Python environment and the QCG-PilotJob service modules; in practice, however, this difference should not be greater than 1-2 seconds.

	init overhead, finish overhead, total overhead - these are respectively the time markups for the initiation of the QCG-PilotJob service (the time from the start of the service to the start of the first job within it), the finish time of the QCG-PilotJob service (the time from the end of the last job within it to the end of the QCG-PilotJob service) and the sum of the two previously mentioned

	overhead ratio - the ratio of total overhead to service runtime

	overhead core-hours - it is a product of available cores and total overhead value (expressed in hours)

An example of a generated report:

$ qcg-pm-report stats out/intelmpi-mpi-iter-mixed-large-10128902/
 total jobs: 2000
 failed jobs: 0
 total cores: 960
 total nodes: 40
 service started: 2021-04-14 14:20:08.223523
 service finished: 2021-04-14 14:23:21.028799
 service runtime: 192.81 secs
 init overhead: 4.08 secs
 finish overhead: 1.57 secs
 total overhead: 5.65 secs
 overhead ratio: 2.9
 overhead core-hours: 1.51

launch-stats

The launch-stats command is used to generate a report showing delays in
launching and recording the completion of jobs by the QCG-PilotJob service. The
following metrics are generated:

	total start overhead - total (for all jobs) time difference between starting the job by the QCG-PilotJob service and the actual start of the job (information registered by the running wrapper), expressed in seconds

	total finish overhead - total (for all jobs) difference in time between the actual finish of the job (information registered by the running wrapper) and the moment when it was registered by the QCG-PilotJob service, expressed in seconds

	total start and finish overhead - sum of the two previous metrics

	average job start overhead - average delay in starting a single job

	average job finish overhead - average delay in handling the completion of a single job

	average job total overhead - average total delay in starting and handling the completion of a single job

	average real job run time - average real run time of a single job (determined by metrics sent by wrapper)

	average qcg job run time - average duration of a single job (determined from the times recorded by the QCG-PilotJob service)

	average job overhead per runtime - percentage ratio of average job total overhead to the average real job run time

	generated for total jobs - the number of jobs for which a report was generated, i.e. the number of all jobs for which metrics were recorded (these were provided by the wrapper

An example of a generated report:

$ qcg-pm-report launch-stats out/intelmpi-mpi-iter-mixed-large-10128902/
 total start overhead: 29.2834
 total finish overhead: 62.1390
 total start and finish overhead: 91.4224
 average job start overhead: 0.0146
 average job finish overhead: 0.0311
 average job total overhead: 0.0457
 average real job run time: 16.5664
 average qcg job run time: 16.6121
 average job overhead per runtime (%): 0.29
 generated for total jobs: 2000

gantt

The gantt command is used to generate a timeline plot with the start and end
of each task running on the allocated resources marked. This plot shows an
overall view of the scheduling plan. In order to generate the plot, as an
additional argument, in addition to the path to the working directory of the
task, the name of the target file where the plot should be saved should be
given. Supported files include: pdf, png, jpeg. Note - the time to generate
the graph depends on the number of resources, the number of tasks and the
duration of the entire workflow, and for larger scenarios can be a
time-consuming operation. In case of a scenario running 2000 tasks on 960 cores
and 40 nodes, the graph generation may take up to 3 minutes.

Example of chart generation:

$ qcg-pm-report gantt out/intelmpi-mpi-iter-mixed-10128873/ gantt.pdf

A sample chart generated:

[image: _images/example-qcg-gantt.png]

gantt-gaps

The gantt-gaps command is used to generate a timeline plot with marked
moments when resources were not used. This plot is in a way the negative of the
plot generated by the “gantt” command. As an additional argument, in addition
to the path to the working directory of the task, you should give the name of
the target file where the plot should be saved. The following files are
supported: pdf, png, jpeg. Note - the time to generate the graph depends on
the number of resources, the number of tasks and the duration of the entire
workflow, and for larger scenarios can be a time-consuming operation. In the
case of a scenario running 2000 tasks on 960 cores and 40 nodes, graph
generation can take up to 3 minutes.

Example of chart generation:

$ qcg-pm-report gantt-gaps out/intelmpi-mpi-iter-mixed-10128873/ gantt-gaps.pdf

A sample chart generated:

[image: _images/example-qcg-gantt-gaps.png]

rusage

The rusage command is used to generate a report showing the usage of available resources. In the basic version, it displays two metrics:

	used cores - number of cores on which tasks were running

	average core utilization (%) - percentage core utilization, it is calculated as the average value of the percentage utilization of a single core (on which at least one task was running)

The single core utilisation percentage is calculated as the ratio of the time
during which a job was actually running on a given node (based on metrics sent
by the wrapper) to the total time of running the QCG-PilotJob service (see
service runtime in the stats command).

An example of a generated report:

$ qcg-pm-report rusage out/intelmpi-mpi-iter-mixed-large-10128902/
 used cores: 960
 average core utilization (%): 94.2%

Running the rusage command with the --details parameter will list the
usage percentages for each core.

For example, a generated report containing details:

$ qcg-pm-report rusage --details out/intelmpi-mpi-iter-mixed-large-10128902/
 used cores: 960
 average core utilization (%): 94.2%
 tcn1261
 0 : 95.9%, unused 7.8734 s
 1 : 95.9%, unused 7.8734 s
 2 : 96.1%, unused 7.4926 s
 3 : 96.1%, unused 7.4926 s
 4 : 96.2%, unused 7.3733 s
 5 : 96.2%, unused 7.3733 s
 6 : 90.0%, unused 19.3723 s
 7 : 90.0%, unused 19.3723 s
 8 : 90.4%, unused 18.5259 s
 9 : 90.4%, unused 18.5259 s
 10 : 90.1%, unused 19.0094 s
 11 : 90.1%, unused 19.0094 s
 12 : 90.3%, unused 18.7818 s
 13 : 90.3%, unused 18.7818 s
 14 : 90.3%, unused 18.7562 s
 15 : 90.3%, unused 18.7562 s
 16 : 95.4%, unused 8.8197 s
 17 : 95.4%, unused 8.8197 s
 18 : 95.5%, unused 8.6833 s
 19 : 95.5%, unused 8.6833 s
 20 : 95.6%, unused 8.5297 s
 21 : 95.6%, unused 8.5297 s
 22 : 95.8%, unused 8.0063 s
 23 : 95.8%, unused 8.0063 s

(due to the length of the report, data for one computational node only are included).

efficiency

Command efficiency is used to show the percentage of resource usage,
excluding the time when the resource was inactive due to a scheduling plan.
Resource usage time is counted as time when any task was running or when
another task was waiting for another resource to free up. The efficiency metric
only takes into account delays due to QCG-PilotJob’s job launching and
termination handling.

An example of a generated report:

$ qcg-pm-report efficiency out/intelmpi-mpi-iter-mixed-large-10128902/
 used cores: 960
 average core utilization (%): 99.6%

Performance tuning

Node launcher agents

To launch user jobs in Slurm allocation, the QCG PilotJob service is using its
own services that are started on each of the allocation’s node. This
sub-service is called node launcher agent. When used on big allocations, that
contains hundred of nodes, the process of starting node launcher agents can
therefore take longer. Also there is a chance that due to some circumstances
(software or hadrware), the process of node launching agent fail. To deal with
such cases, there are command line options to control the process of starting
node launcher agents:

	--nl-init-timeout NL_INIT_TIMEOUT - the NL_INIT_TIMEOUT specify
number of seconds the service should wait for all node launcher agents start
(600 by default),

	--nl-ready-treshold NL_READY_TRESHOLD- the NL_READY_TRESHOLD value
(from range 0.0 - 1.0) control the ration of ready node launcher agents when
process of executing workflow can be started (1.0 by default).

After starting of all node launcher agents, the QCG PilotJob service waits up
to NL_INIT_TIMEOUT until NL_READY_TRESHOLD * total number of agents
report it’s successfull start. When it happen, the execution of the workflow
begins, and jobs are submitted only to those nodes where launcher agents
successfully started. All other agents may register after this time enabling
their nodes for exection. When, from some reason the required number of agents
did not register in given interval, the QCG PilotJob service should report the
error and exit without starting workflow execution.

Reserving a core for QCG PJM

We recommend to use --system-core parameter for workflows that contains many small jobs (HTC) or bigger allocations
(>256 cores). This will reserve a single core in allocation (on the first node of the allocation) for QCG PilogJob
Manager service.

Processes statistics

QCG-PilotJob Manager support gathering metrics about launched processes. This feature enables analysis of application
behavior such as:

	process tree inspection, from the lauching by QCG-PilotJob to the final application process (with all intermediate steps,
such as srun, mpirun, orted etc. with time line (delays between following processes in tree)

	process localization, such as: node name and cpu affinity

	coarse process metrics: cpu and memory utilization

Note

Please note that this is initial version of gathering process metrics, and due to the implementation obtained data might be precise.

How it works

When --enable-proc-stats has been used with QCG-PilotJob (either as a command line argument or as argument to the server_args parameter of LocalManager class), the launcher agent started on each of the Slurm allocation’s node stars thread that periodically query about processes started in the local system. Because collecting statistics about all processes in the system would take too much time, and thus reduce the frequency of queries, launcher agent only checks the descendants of the slurmstepd process. This process is responsible for starting every user process in Slurm, including launcher agent. Therefore we register all process started by launcher agent, and also processes started by MPI that is configured with Slurm (in such situation, Slurm asks slurmstepd daemon to launch instancesof MPI application). Every descendant process of the slurmstepd is registered with it’s identifier (pid) and basic statistics, such as:

	pid - process identifier

	process name (in most cases name of the executable file)

	command line arguments

	parent process name

	parent process identifier

	cpu affinity - list of available cores

	accumulated process times in seconds (the detailed description of the format is available at https://psutil.readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.cpu_times)

	memory information (the detailed description of the format is available at https://psutil.readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.Process.memory_info)

Currently the data from each query is stored in in-memory database and saved to the file at launcher agent finish. The destination file, created in QCG-PilotJob working directory, will have name of following pattern: ptrace_{node_name}_{current_date}_{random_number}.log. In the future releases we are planing to send those information to external service that will allow to run-time monitoring of gathered statistics.

It is worth to mention about some shortcoming of such approach:

	because the processes are queried with some frequency (currently every 1 second), there is a chance that very short living process will not be registered,

	there is a possibility that after finish of some process, another one with the same identifier will be created later

How to use

First of all the --enable-proc-stats arument of the QCG-PilotJob service must be used either as command line argument, or as one of the server_args element in LocalManager class. When all QCG-PilotJob workflow finish, the working directory should contain one or many (for each of allocation nodes there should be instance of this file) files named ptrace_{node_name}_{current_date}_{random_number}.log. Those files contains information about processes statistics in JSON format. To analyze this data, QCG-PilotJob provides qcg-pm-processes command line tool. Documentation about this tool is available with:

In this example we submitted 6 instances of mpi_iter job, where each instance is an MPI application started on 8 cores.

To get process tree of the first instance of this job:

$ qcg-pm-processes tree out-api-mpi-iter mpi_iter:0
job mpi_iter:0, job process id 28521, application name openmpi_3.1_gcc_6.2_app
 --28521:bash (bash -c source /etc/profile; module purge; module load openmpi/3.1.4_gcc620; exe) node(e0025) created 2021-03-25 17:18:34.350000
 --29537:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.83 secs
 --29542:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.86 secs
 --29638:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 4.01 secs
 --29608:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.98 secs
 --29547:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.88 secs
 --29579:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.95 secs
 --29554:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.91 secs
 --29567:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.94 secs

To get detail process info:

$ qcg-pm-processes apps out-api-mpi-iter mpi_iter:0
found 8 target processes
29537:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.180000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [0]
 cpu times: [0.04, 0.03, 0.0, 0.0, 0.0]
 cpu memory info: [25219072, 525488128, 12701696, 8192, 0, 153374720, 0]
 cpu memory percent: 0.018710530527870046
29542:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.210000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [1]
 cpu times: [0.06, 0.03, 0.0, 0.0, 0.0]
 cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01870141381655226
29638:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.360000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [7]
 cpu times: [0.05, 0.03, 0.0, 0.0, 0.0]
 cpu memory info: [25202688, 391258112, 12689408, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01869837491277966
29608:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.330000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [6]
 cpu times: [0.04, 0.04, 0.0, 0.0, 0.0]
 cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01870141381655226
29547:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.230000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [2]
 cpu times: [0.06, 0.03, 0.0, 0.0, 0.0]
 cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01870141381655226
29579:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.300000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [5]
 cpu times: [0.05, 0.03, 0.0, 0.0, 0.0]
 cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01870141381655226
29554:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.260000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [3]
 cpu times: [0.05, 0.04, 0.0, 0.0, 0.0]
 cpu memory info: [25202688, 391258112, 12689408, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01869837491277966
29567:openmpi_3.1_gcc_6.2_app
 created: 2021-03-25 17:18:38.290000
 cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.1_gcc_6.2_app
 parent: 28521:mpirun
 cpu affinity: [4]
 cpu times: [0.06, 0.03, 0.0, 0.0, 0.0]
 cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624, 0]
 cpu memory percent: 0.01870141381655226

It is worth to mention, that analysis with the qcg-pm-processes tool can be done at any time outside the Slurm allocation. The only input data is the working directory.

Log files

QCG-PilotJob Manager creates a sub directory .qcgpjm-service- in working directory where the following files are
stored:

	service.log - logs of QCG-PilotJob Manager, very useful in case of problems

	jobs.report - the file containing information about all finished jobs, by default written in text format, but
there is an option for JSON format which will be easier to parse

	final_status - created at the finish of QCG-PilotJob Manager with general statistics about platform, available
resources and jobs in registry (not removed) that finished, failed etc.

The verbosity of log file can be controlled by the --log parameter where debug value is the most verbose mode,
and critical the most silent mode. We recommend to not set the debug for large HTC workflows, as it additionally
loads the file system.

Slurm performance

srun command

QCG-Pilot job uses the Slurm’s srun client to run applications within a
created allocation. Thanks to the tight integration with the queueing system,
srun is able to properly run an application on the specified node of our
allocation using, for example, cpu binding mechanisms. The usage of srun
seems to be particularly convenient for running parallel applications using the
MPI library. It provides a unified way of running such applications, regardless
of the vendor and version of MPI library (note that the commands used to run
MPI-based applications provided by different MPI libraries such as
OpenMPI/IntelMPI/MPICH have a different name, syntax and way of running
the target application). Unfortunately, when starting an application, the
srun client communicates with the queueing system controller and creates a
step for each running application. It turns out that with too frequent use of
this client, the queue system controller struggles with quite a heavy load
which affects the performance of the whole queueing system.

The QCG-PilotJob service uses the srun client by default in two cases:

	during service initialization to launch agents* running on each allocation node

	in the srunmpi model when launching user applications with the srunmpi model.

It is possible to replace srun with alternatives for both these cases as presented below.

Recommendations

Agents

When running QCG-PilotJob on large allocations (containing more than a few
dozen nodes) it is recommended to use the --nl-start-method call parameter
with the value ssh which will cause the QCG-PilotJob service agents to be
started on the allocation nodes using the ssh protocol.

Note

Ensure that logging in using the ssh protocol is done using a

public key without requiring a password. Information on how to configure the
ssh service in this way should be available in the documentation of the
computing system, and usually boils down to generating an ssh key and adding
its public signature to the ~/.ssh/authorized_keys file.

User parallel applications

For scenarios containing a significant number of parallel user jobs, we
recommend that you resign from the srunmpi tasks startup model and use one
of the following:

	intelmpi

	openmpi

These are models that use native IntelMPI and OpenMPI library commands to
run parallel applications. Additionally, they allow to configure call
parameters using model_opts/mpirun and model_opts/mpirun_args elements. An
example syntax of such commands is as follows:

1) example of running a LAMMPS application compiled with the IntelMPI library
using the ssh protocol on a SupermucNG system

....
"name": "lammps-bench",
"execution": {
 "exec": "lmp",
 "args": ["-log", "none", "-i", "in.lammps"],
 "stderr": "stderr",
 "stdout": "stdout",
 "model": "intelmpi",
 "model_opts": { "mpirun_args": ["-launcher", "ssh"] }
},
"resources": {
 "numCores": {
 "exact": 24
 }
}
....

	example of running an application compiled with the OpenMPI library

 "name": "mpi-app",
"execution": {
 "exec": "mpiapp",
 "stderr": "stderr",
 "stdout": "stdout",
 "model": "openmpi",
 "model_opts": {
 "mpirun": "/opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/bin/mpirun",
 "mpirun_args": ["--mca", "rmaps_rank_file_physical", "1"]
 },
 modules = ["openmpi/4.1.0_gcc620"],
},
"resources": {
 "numCores": {
 "exact": 24
 }
}

FAQ

How is QCG-PilotJob better than a BASH script?

QCG-PilotJob has been designed to simplify definition of common scenarios of execution
of large number of tasks on computing resources. Typically these scenarios were
done by application developers in a custom and often far from an optimal way.
With QCG-PilotJob users are offered with ready to use efficient mechanisms
as well as nice API that can be recognized as much more natural solution
than sophisticated BASH scripts, for both direct human use and integration with other software components.

The particular advantage of QCG-PilotJob is visible in case of dynamic scenarios
with dynamic number of jobs, dynamic requirements of these jobs and a need to start / cancel
these jobs depending on the intermediary results of calculations.
For these scenarios the core capabilities of QCG-PilotJob and easy to use constructs
offered by QCG-PilotJob API seem to be exceptionally sound.

For all kinds of scenarios, also for the static use-cases (where we know in advance a number of tasks,
their requirements, and we have a static allocation) QCG-PilotJob provides a few advantages,
like built-in mechanism to resume prematurely stopped workflow,
tools for collecting timings from the execution and generation of the reports
for the analysis (e.g. Gantt chart), or a custom launcher for single-core tasks,
which is more efficient (at least on some resources) than the srun command run from BASH.
QCG-PilotJob delivers also different predefined models of running tasks with
srun, intelmpi, openmpi as well as a with openmp,
which simplify execution of MPI and OpenMP based applications
across different computing resources.

However, the target powerfulness of the QCG-PilotJob should be achieved when we
release the common queue service that will provide the possibility to combine resources
from many allocations into one QCG-PilotJob. Then it will be easy to extend the resources
depending on the dynamic needs of the scenario, taking them even from many HPC facilities.

How is QCG-PilotJob better than existing Workflow / Pilot Job implementations?

The strategic decision for the development of QCG-PilotJob was to ensure simplicity of
the entire process related to the tool’s use: from its installation,
through defining workflows, to the actual execution of tasks.
Thus, in contrast to many existing products, QCG-PilotJob not only simplifies
definition of execution scenarios, but also comes very easy to install and can be run
without problems across different environments, even conservative and variously restricted ones.

It should be stressed that QCG-PilotJob is a fully user-space solution, and as such,
can be installed by an ordinary user, in its home directory (e.g. in a virtual environment).
At any step there is no need to bother administrators: to install something or to open some ports.

Dictionary

	Scheduling system

	A service that controls and schedules access to the fixed set of computational resources (aka. queuing system,
workload manager, resource management system). The current implementation of QCG-PilotJob supports SLURM cluster
management and job scheduling system.

	Job

	A sequential or parallel program with defined resource requirements

	Job array

	A mechanism that allows to submit a set of jobs with the same resource requirements to the scheduling system at once;
commonly used in parameter sweep scenarios

	Allocation

	A set of resources allocated by the scheduling system for a specific time period; resources assigned to an allocation
are static and do not change in time

	QCG-PilotJob Manager

	A service started inside a scheduling system allocation that schedules and controls execution of jobs on the same
allocation

	QCG-PilotJob Manager API

	An interface in the form of Python module that provides communication with QCG-PilotJob Manager

	Application Controller

	A user’s program run as one of jobs inside QCG-PilotJob Manager that, using the QCG-PilotJob Manager API, dynamically
submits and synchronizes new jobs

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

qcg.pilotjob.api package

Submodules

	qcg.pilotjob.api.errors module

	qcg.pilotjob.api.job module

	qcg.pilotjob.api.jobinfo module

	qcg.pilotjob.api.manager module

qcg.pilotjob.api.errors module

	
exception qcg.pilotjob.api.errors.QCGPJMAError

	Bases: Exception

	
exception qcg.pilotjob.api.errors.InternalError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.InvalidJobDescriptionError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.JobNotDefinedError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.ConnectionError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.WrongArgumentsError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.FileError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.ServiceError

	Bases: qcg.pilotjob.api.errors.QCGPJMAError

	
exception qcg.pilotjob.api.errors.TimeoutElapsed

	Bases: Exception

qcg.pilotjob.api.job module

	
class qcg.pilotjob.api.job.Jobs

	Bases: object

Group of job descriptions to submit

	
_list

	map with added job descriptions

	Type

	dict(str,dict)

	
_job_idx

	counter which is used to return ordered lists

	Type

	int

Initialize instance.

	
add(job_attrs=None, **kw_attrs)

	Add a new, simple job description to the group.

If both arguments are present, they are merged and processed as a single dictionary.
The following job attributes are currenlty supported:

	name (str, optional): the job name

	exec (str, optional): path to the executable program

	script (str, optional): bash script content

	args (str or list(str), optional): executable program arguments

	stdin (str, optional): path to file which content should be passed to the standard input stream

	stdout (str, optional): path to the file where standard output stream should be saved

	stderr (str, optional): path to the file where standard error stream should be saved

	wd (str, optional): path to the working directory where job should be started

	modules (str or list(str), optional): list of modules that should be loaded before job start

	venv (str, optional): path to the virtual environment that should be initialized before job start

	model (str, optional): model of execution

	model_opts (dict, optional): model options

	numCores (int or dict, optional): number of required cores specification

	numNodes (int or dict, optional): number of required nodes specification

	wt (str, optional): job’s maximum wall time

	iteration (int, dict or list, optional): iterations definition

	after (str or list(str), optional): name of the job’s that must finish successfully before current one start

The attributes exec (with optional args) are mutually exclusive with script.

The numCores and numNodes atrributes may contain dictionary with following keys:

	min (int, optional): minimum number of resources

	max (int, optional): maximum number of resources

	exact (int, optional): exact number of resources

	scheduler (str, optional): name of iteration resource scheduler

The min, max attributes are mutually exclusive with exact. The description of iteration resource
schedulers can be found in documentation.

The iteration argument may contain either:

	dictionary with following keys:

	start (int, optional): iterations start index

	stop (int, optional): iterations stop index

	values list with following iteration names

The total number of iterations will be:

	stop - start (the last iteration index will be stop - 1) for boundary definition

	length of values list

	Parameters

	
	job_attrs (dict) – job description attributes in a simple format

	kw_attrs (dict) – job description attributes as a named arguments in a simple format

	Raises

	InvalidJobDescriptionError – in case of non-unique job name or invalid job description

	
add_std(job_attrs=None, **kw_attrs)

	Add a new, standard job description (acceptable by the QCG PJM) to the group.

If both arguments are present, they are merged and processed as a single dictionary.

	Parameters

	
	job_attrs (dict) – job description attributes in a standard format

	kw_attrs (dict) – job description attributes as a named arguments in a standard format

	Raises

	InvalidJobDescriptionError – in case of non-unique job name or invalid job description

	
remove(name)

	Remote a job from the group.

	Parameters

	name (str) – name of the job to remove

	Raises

	JobNotDefinedError – in case of missing job in a group with given name

	
clear()

	Remove all jobs from the group.

	Returns

	number of removed elements

	Return type

	int

	
job_names()

	Return a list with job names in group.

	Returns

	job names in group

	Return type

	list(str)

	
ordered_job_names()

	Return a list with job names in group in order they were appended.

	Returns

	ordered job names

	Return type

	list(str)

	
jobs()

	Return job descriptions in format acceptable by the QCG-PJM

	Returns

	a list of jobs in the format acceptable by the QCG PJM (standard format)

	Return type

	list(dict)

	
ordered_jobs()

	Return job descriptions in format acceptable by the QCG-PJM in order they were appended.

	Returns

	a list of jobs in the format acceptable by the QCG PJM (standard format)

	Return type

	list(dict)

	
load_from_file(file_path)

	Read job’s descriptions from JSON file in format acceptable (StdJob) by the QCG-PJM

	Parameters

	file_path (str) – path to the file with jobs descriptions in a standard format

	Raises

	InvalidJobDescriptionError – in case of invalid job description

	
save_to_file(file_path)

	Save job list to JSON file in a standard format.

	Parameters

	file_path (str) – path to the destination file

	Raises

	FileError – in case of problems with opening / writing output file.

qcg.pilotjob.api.jobinfo module

	
class qcg.pilotjob.api.jobinfo.JobInfo

	Bases: object

Object to store parsed job informations.

	
name

	job name

	Type

	str

	
status

	job status

	Type

	str

	
nodes

	dictionary with node names and list of allocated cores

	Type

	dict(str, int[]), optional

	
total_cores

	number of total allocated cores

	Type

	int

	
wdir

	working directory path

	Type

	str

	
time

	job run time

	Type

	timedelta, optional

	
iteration

	iteration index

	Type

	int, optional

	
iterations

	info about iterations

	Type

	dict, optional

	
childs

	a list of child jobs

	Type

	JobInfo[], optional

	
history

	list of job status change moments

	Type

	str[], optional

	
messages

	
	Type

	str

	
static from_child(job_name, child_data)

	Parse information about a sub job.

	Parameters

	
	job_name (str) – job name

	child_data (dict) – element of ‘childs’ from job info response

	Returns

	instance of job info

	Return type

	JobInfo

	
static from_job(job_data)

	Parse job info response.

	Parameters

	job_data (dict) – job information obtained with jobInfo request

	Returns

	parsed information

	Return type

	JobInfo

qcg.pilotjob.api.manager module

	
class qcg.pilotjob.api.manager.TimeStamp(manager, timeout_secs=None)

	Bases: object

Timestamp utility to trace timeouts and compute the poll times that do not exceed defined timeouts.

Create timestamp.
During initialization the timestamp start moment is set to current time.

	Parameters

	
	(Manager) (manager) – the manager instance with defined default poll and publisher timeout setting

	(int|float) (timeout) – the timeout in seconds for operation related with this timestamp, the default value
None means the timeout is not defined (infinity)

	
secs_from_start

	Return number of seconds elapsed since start

	
check_timeout()

	Check if timeout has been reached.
If timeout_secs has been defined check if timeout_secs have elapsed from started datetime.
If timeout_secs is not defined always return False

	Returns

	True if timeout reached, False otherwise

	
get_poll_time()

	Return the poll time that do not exceed timeout.
If timeout already reached, the 0 will be returned.

	Returns

	poll time in seconds

	
get_events_timeout()

	Return the subscribe timeout that do not exceed total operation timeout.
If timeout already reached, the 0 will be returned.

	Returns

	the timeout time in seconds

	
class qcg.pilotjob.api.manager.Manager(address=None, cfg=None)

	Bases: object

The Manager class is used to communicate with single QCG-PilotJob manager instance.

We assume that QCG-PilotJob manager instance is already running with ZMQ interface. The communication with
QCG-PilotJob is fully synchronous.

Initialize instance.

	Parameters

	
	address (str) – [proto://]host[:port]
the default values for ‘proto’ and ‘port’ are respectively - ‘tcp’ and ‘5555’; if ‘address’
is not defined the following procedure will be performed:

	if the environment contains QCG_PM_ZMQ_ADDRESS - the value of this var will be used,

else

	the tcp://127.0.0.1:5555 default address will be used

	cfg (dict) – ‘default_poll_delay’ - the default delay between following status polls in wait methods
‘default_pub_timeout’ - the default timeout for waiting on published events
‘log_file’ - the location of the log file
‘log_level’ - the log level (‘DEBUG’); by default the log level is set to INFO

	
DEFAULT_ADDRESS_ENV = 'QCG_PM_ZMQ_ADDRESS'

	

	
DEFAULT_ADDRESS = 'tcp://127.0.0.1:5555'

	

	
DEFAULT_PROTO = 'tcp'

	

	
DEFAULT_PORT = '5555'

	

	
DEFAULT_POLL_DELAY = 5

	

	
DEFAULT_PUB_TIMEOUT = 300

	

	
send_request(request)

	Method for testing purposes - allows to send any request to the QCG PJM.
The received response is validated for correct format.

	Parameters

	request (dict) – the request data to send

	Returns

	validated response

	Return type

	dict

	
resources()

	Return available resources.

Return information about current resource status of QCG PJM.

	Returns

	data in format described in ‘resourceInfo’ method of QCG PJM.

	Return type

	dict

	Raises

	see _send_and_validate_result

	
submit(jobs)

	Submit jobs.

	Parameters

	jobs (Jobs) – the job descriptions to submit

	Returns

	list of submitted job names

	Return type

	list(str)

	Raises

	
	InternalError - in case of unexpected result format

	see _send_and_validate_result

	
list()

	List all jobs.

Return a list of all job names registered in the QCG PJM. Beside the name, each job will contain additional
data, like:

status (str) - current job status
messages (str, optional) - error message generated during job processing
inQueue (int, optional) - current job position in scheduling queue

	Returns

	dictionary with job names and attributes

	Return type

	dict

	Raises

	
	InternalError - in case of unexpected result format

	see _send_and_validate_result

	
status(names)

	Return current status of jobs.

	Parameters

	names (str|list(str)) – list of job names to get status for

	Returns

	
	dictionary with job names and status data in format of dictionary with following keys:

	status (int): 0 - job found, other value - job not found
message (str): an error description
data (dict):

jobName: job name
status: current job status

	Return type

	dict

	Raises

	see _send_and_validate_result

	
info(names, **kwargs)

	Return detailed information about jobs.

	Parameters

	
	names (str|list(str)) – list of job names to get detailed information about

	kwargs (**dict) – additional keyword arguments to the info method, currently following attributes are
supported:

withChilds (bool): if True the detailed information about all job’s iterations will be returned

	Returns

	
	dictionary with job names and detailed information in format of dictionary with following keys:

	status (int): 0 - job found, other value - job not found
message (str): an error description
data (dict):

jobName (str): job name
status (str): current job status
iterations (dict, optional): the information about iteration job

start: start index of iterations
stop: stop index of iterations
total: total number of iterations
finished: already finished number of iterations
failed: already failed number of iterations

	childs (list(dict), optional): only when ‘withChilds’ option has been used, each entry contains:

	iteration (int): the iteration index
state (str): current state of iteration
runtime (dict): runtime information

messages (str, optional): error description
runtime (dict, optional): runtime information, see below
history (str): history of status changes, see below

	The runtime information can contains following keys:

	
	allocation (str): information about allocated resources in form:

	
NODE_NAME0[CORE_ID0[:CORE_ID1+]][,NODE_NAME1[CORE_ID0[:CORE_ID1+]]…..]

the nodes are separated by the comma, and each node contain CPU’s identifiers separated by colon :
enclosed in square brackets

wd (str): path to the working directory
rtime (str): the running time (set at the job’s or job’s iteration finish)
exit_code (int): the exit code (set at the job’s or job’s iteration finish)

	The history information contains multiple lines, where each line has format:

	YEAR-MONTH-DAY HOUR:MINUTE:SECOND.MILLIS: STATE

The first part is a job’s or job’s iteration status change timestamp, and second is the new state.

	Return type

	dict

	Raises

	
	InternalError – in case the response format is invalid

	ConnectionError – in case of non zero exit code, or if connection has not been established yet

	
info_parsed(names, **kwargs)

	Return detailed and parsed information about jobs.

The request sent to the QCG-PilotJob manager instance is the same as in info, but the result information is
parsed into more simpler to use JobInfo object.

	Parameters

	
	names (str|list(str)) – list of job names to get detailed information about

	kwargs (**dict) – additional keyword arguments to the info method, currently following attributes are
supported:

withChilds (bool): if True the detailed information about all job’s iterations will be returned

	Returns

	a dictionary with job names and information parsed into JobInfo object

	Return type

	dict(str, JobInfo)

	Raises

	
	InternalError – in case the response format is invalid

	ConnectionError – in case of non zero exit code, or if connection has not been established yet

	
remove(names)

	Remove jobs from QCG-PilotJob manager instance.

This function might be useful if we want to submit jobs with the same names as previously used, or to release
memory allocated for storing information about already finished jobs. After removing, there will be not possible
to get any information about removed jobs.

	Parameters

	names (str|list(str)) – list of job names to remove from QCG-PilotJob manager

	Raises

	
	InternalError – in case the response format is invalid

	ConnectionError – in case of non zero exit code, or if connection has not been established yet

	
cancel(names)

	Cancel jobs execution.

This method is currently not supported.

	Parameters

	names (str|list(str)) – list of job names to cancel

	Raises

	InternalError – always

	
finish()

	Send finish request to the QCG-PilotJob manager, close connection.

Sending finish request to the QCG-PilotJob manager result in closing instance of QCG-PilotJob manager (with
some delay). There will be not possible to send any new requests to this instance of QCG-PilotJob manager.

	Raises

	
	InternalError – in case the response format is invalid

	ConnectionError – in case of non zero exit code, or if connection has not been established yet

	
cleanup()

	Clean up resources.

The custom logging handlers are removed from top logger.

	
system_status()

	

	
wait4(names, timeout=None)

	Wait for finish of specific jobs.

This method waits until all specified jobs finish its execution (successfully or not).
The QCG-PilotJob manager is periodically polled about status of not finished jobs. The poll interval (2 sec by
default) can be changed by defining a ‘poll_delay’ key with appropriate value (in seconds) in
configuration of instance.

	Parameters

	
	names (str|list(str)) – list of job names to get detailed information about

	timeout (int|float) – maximum number of seconds to wait

	Returns

	dict - a map with job names and their terminal status

	Raises

	
	TimeoutElapsed – in case of timeout elapsed

	InternalError – in case the response format is invalid

	ConnectionError – in case of non zero exit code, or if connection has not been established yet

	
wait4all(timeout_secs=None)

	Wait for finish of all submitted jobs.

	Parameters

	(int|float) (timeout_secs) – optional timeout setting in seconds

:raise TimeoutElapsed when timeout elapsed (if defined as argument)

This method waits until all jobs submitted to service finish its execution (successfully or not).

	
wait4_any_job_finish(timeout_secs=None)

	Wait for finish one of any submitted job.

This method waits until one of any jobs submitted to service finish its execution (successfully or not).

:arg timeout_secs (float|int) - timeout in milliseconds, endlessly (None) by default

:raise TimeoutElapsed when timeout elapsed (if defined as argument)

:return (str, str) identifier of finished job and it’s status or None, None if timeout has been reached.

	
static is_status_finished(status)

	Check if status of a job is a terminal status.

	Parameters

	status (str) – a job status

	Returns

	true if a given status is a terminal status

	Return type

	bool

	
class qcg.pilotjob.api.manager.LocalManager(server_args=None, cfg=None)

	Bases: qcg.pilotjob.api.manager.Manager

The Manager class which launches locally (in separate thread) instance of QCG-PilotJob manager

The communication model as all functionality is the same as in Manager class.

Initialize instance.

Launch QCG-PilotJob manager instance in background thread and connect to it. The port number for ZMQ interface
of QCG-PilotJob manager instance is randomly selected.

	Parameters

	
	server_args (list(str)) – the command line arguments for QCG-PilotJob manager instance

	--net

	enable network interface

	--net-port NET_PORT

	port to listen for network interface (implies –net)

	--net-port-min NET_PORT_MIN

	minimum port range to listen for network interface if
exact port number is not defined (implies –net)

	--net-port-max NET_PORT_MAX

	maximum port range to listen for network interface if
exact port number is not defined (implies –net)

	--file

	enable file interface

	--file-path FILE_PATH

	path to the request file (implies –file)

	--wd WD

	working directory for the service

	--envschema ENVSCHEMA

	job environment schema [auto|slurm]

	--resources RESOURCES

	source of information about available resources
[auto|slurm|local] as well as a method of job
execution (through local processes or as a Slurm sub
jobs)

	--report-format REPORT_FORMAT

	format of job report file [text|json]

	--report-file REPORT_FILE

	name of the job report file

	--nodes NODES

	configuration of available resources (implies
–resources local)

	–log {critical,error,warning,info,debug,notset}

	log level

	--system-core

	reserve one of the core for the QCG-PJM

	--disable-nl

	disable custom launching method

	--show-progress

	print information about executing tasks

	--governor

	run manager in the governor mode, where jobs will be
scheduled to execute to the dependant managers

	--parent PARENT

	address of the parent manager, current instance will
receive jobs from the parent manaqger

	--id ID

	optional manager instance identifier - will be
generated automatically when not defined

	--tags TAGS

	optional manager instance tags separated by commas

	--slurm-partition-nodes SLURM_PARTITION_NODES

	split Slurm allocation by given number of nodes, where
each group will be controlled by separate manager
(implies –governor)

	--slurm-limit-nodes-range-begin SLURM_LIMIT_NODES_RANGE_BEGIN

	limit Slurm allocation to specified range of nodes
(starting node)

	--slurm-limit-nodes-range-end SLURM_LIMIT_NODES_RANGE_END

	limit Slurm allocation to specified range of nodes
(ending node)

each command line argument and (optionaly) it’s value should be passed as separate entry in the list

	cfg (dict) –
	‘init_timeout’ - the timeout (in seconds) client should wait for QCG-PilotJob manager start until it raise

	error, 300 by default

’poll_delay’ - the delay between following status polls in wait methods
‘log_file’ - the location of the log file
‘log_level’ - the log level (‘DEBUG’); by default the log level is set to INFO

	
finish()

	Send a finish control message to the manager and stop the manager’s process.

Sending finish request to the QCG-PilotJob manager result in closing instance of QCG-PilotJob manager (with
some delay). There will be not possible to send any new requests to this instance of QCG-PilotJob manager.

If the manager process won’t stop in 10 seconds it will be terminated.
We also call the ‘cleanup’ method.

	Raises

	
	InternalError – in case the response format is invalid

	ConnectionError – in case of non zero exit code, or if connection has not been established yet

	
kill_manager_process()

	Terminate the manager’s process with the SIGTERM signal.

In normal conditions the finish method should be called.

	
static is_notebook()

	

qcg.pilotjob.executor_api package

Subpackages

	qcg.pilotjob.executor_api.templates package
	Submodules
	qcg.pilotjob.executor_api.templates.basic_template module

	qcg.pilotjob.executor_api.templates.qcgpj_template module

Submodules

	qcg.pilotjob.executor_api.qcgpj_executor module

	qcg.pilotjob.executor_api.qcgpj_future module

qcg.pilotjob.executor_api.templates package

Submodules

	qcg.pilotjob.executor_api.templates.basic_template module

	qcg.pilotjob.executor_api.templates.qcgpj_template module

qcg.pilotjob.executor_api.templates.basic_template module

	
class qcg.pilotjob.executor_api.templates.basic_template.BasicTemplate

	Bases: qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate

	
static template() → Tuple[str, Dict[str, Any]]

	

qcg.pilotjob.executor_api.templates.qcgpj_template module

	
class qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate

	Bases: object

	
static template() → Tuple[str, Dict[str, Any]]

	

qcg.pilotjob.executor_api.qcgpj_executor module

	
class qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor(*other_args, wd='.', resources=None, reserve_core=False, enable_rt_stats=False, wrapper_rt_stats=None, log_level='info')

	Bases: concurrent.futures._base.Executor

QCG-PilotJob Executor. It provides simplified interface for common uses of QCG-PilotJob

	Parameters

	
	wd (str, optional) – Working directory where QCG-PilotJob manager should be started, by default it is
a current directory

	resources (str, optional) – The resources to use. If specified forces usage of Local mode of QCG-PilotJob Manager.
The format is compliant with the NODES format of QCG-PilotJob, i.e.:
[node_name:]cores_on_node[,node_name2:cores_on_node][,…].
Eg. to define 4 cores on an unnamed node use resources=”4”,
to define 2 nodes: node_1 with 2 cores and node_2 with 3 cores, use resources=”node_1:2,node_2:3”

	reserve_core (bool, optional) – If True reserves a core for QCG-PilotJob Manager instance,
by default QCG-PilotJob Manager shares a core with computing tasks
Parameters.

	enable_rt_stats (bool, optional) – If True, QCG-PilotJob Manager will collect its runtime statistics

	wrapper_rt_stats (str, optional) – The path to the QCG-PilotJob Manager tasks wrapper program used for collection of statistics

	log_level (str, optional) – Logging level for QCG-PilotJob Manager (for both service and client part).

	other_args (optional) – Optional list of additional arguments for initialisation of QCG-PilotJob Manager

	Returns

	

	Return type

	None

	
shutdown(wait=True)

	Shutdowns the QCG-PJ manager service. If it is already closed, the method has no effect.

	
submit(fn: Callable[[...], Union[str, Tuple[str, Dict[str, Any]]]], *args, **kwargs)

	Submits a specific task to the QCG-PJ manager using template-based, executor-like interface.

	Parameters

	
	fn (Callable) – A callable that returns a tuple representing a task’s template.
The first element of the tuple should be a string containing
a QCG-PilotJob task’s description with placeholders
(identifiers preceded by $ symbol) and the second a dictionary
that assigns default values for selected placeholders.

	*args (variable length list with dicts, optional) – A set of dicts which contain parameters that will be used to substitute placeholders
defined in the template.
Note: *args overwrite defaults, but they are overwritten by **kwargs

	**kwargs (arbitrary keyword arguments) – A set of keyword arguments that will be used to substitute placeholders defined in
the template.
Note: **kwargs overwrite *args and defaults.

	Returns

	The QCGPJFuture object assigned with the submitted task

	Return type

	QCGPJFuture

	
qcgpj_manager

	Returns current QCG-PilotJob manager instance

	
class qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel

	Bases: enum.Enum

An enumeration.

	
CRITICAL = 'critical'

	

	
ERROR = 'error'

	

	
WARNING = 'warning'

	

	
INFO = 'info'

	

	
DEBUG = 'debug'

	

	
class qcg.pilotjob.executor_api.qcgpj_executor.ClientLogLevel

	Bases: enum.Enum

An enumeration.

	
INFO = 'info'

	

	
DEBUG = 'debug'

	

qcg.pilotjob.executor_api.qcgpj_future module

	
class qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture(ids, qcgpjm)

	Bases: object

QCG-PilotJob Future tracks execution of tasks submitted to QCG-PilotJob via QCGPJExecutor.

	Parameters

	
	ids (list(str)) – list of identifiers of tasks submitted to a QCG-PilotJob manager

	qcgpjm (LocalManager) – QCG-PilotJob manager instance, to which tasks have been submitted

	Returns

	

	Return type

	None

	
result(timeout=None)

	Waits for finish of tasks assigned to this future and once finished results their statuses.

This method waits until all tasks assigned to the future are executed (successfully or not).
The QCG-PilotJob manager is periodically polled about status of not finished jobs. The poll interval (2 sec by
default) can be changed by defining a ‘poll_delay’ key with appropriate value (in seconds) in
configuration of instance.

	Parameters

	timeout (int) – currently not used

	Returns

	

	Return type

	dict - a map with tasks names and their terminal status

	
done()

	Checks if the future has been finished

Checks if all tasks assigned to the future are already finished.

	Returns

	

	Return type

	True if all tasks are finished, False otherwise

	
running()

	Checks if the future is still running

Checks if any of tasks assigned to the future are still running.

	Returns

	

	Return type

	True if any of tasks is still running, False otherwise

	
cancel()

	Cancels the future

Cancels all tasks assigned to the future.

	Returns

	

	Return type

	True if the operation succeeded.

	
cancelled()

	Checks if the future has been already cancelled

Checks if the future, and by consequence all the tasks assigned to this future, have been cancelled.

	Returns

	

	Return type

	True if the future has been cancelled, False otherwise.

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 qcg	

 	
 	
 qcg.pilotjob.allocation	

 	
 	
 qcg.pilotjob.api	

 	
 	
 qcg.pilotjob.api.errors	

 	
 	
 qcg.pilotjob.api.job	

 	
 	
 qcg.pilotjob.api.jobinfo	

 	
 	
 qcg.pilotjob.api.manager	

 	
 	
 qcg.pilotjob.cmds	

 	
 	
 qcg.pilotjob.config	

 	
 	
 qcg.pilotjob.environment	

 	
 	
 qcg.pilotjob.errors	

 	
 	
 qcg.pilotjob.executionschema	

 	
 	
 qcg.pilotjob.executor_api	

 	
 	
 qcg.pilotjob.executor_api.qcgpj_executor	

 	
 	
 qcg.pilotjob.executor_api.qcgpj_future	

 	
 	
 qcg.pilotjob.executor_api.templates	

 	
 	
 qcg.pilotjob.executor_api.templates.basic_template	

 	
 	
 qcg.pilotjob.executor_api.templates.qcgpj_template	

 	
 	
 qcg.pilotjob.fileinterface	

 	
 	
 qcg.pilotjob.iterscheduler	

 	
 	
 qcg.pilotjob.joblist	

 	
 	
 qcg.pilotjob.launcher	

 	
 	
 qcg.pilotjob.launcher.launcher	

 	
 	
 qcg.pilotjob.launcher.rtstats	

 	
 	
 qcg.pilotjob.localres	

 	
 	
 qcg.pilotjob.logger	

 	
 	
 qcg.pilotjob.parseres	

 	
 	
 qcg.pilotjob.profile	

 	
 	
 qcg.pilotjob.publisher	

 	
 	
 qcg.pilotjob.receiver	

 	
 	
 qcg.pilotjob.reports	

 	
 	
 qcg.pilotjob.request	

 	
 	
 qcg.pilotjob.resources	

 	
 	
 qcg.pilotjob.response	

 	
 	
 qcg.pilotjob.resume	

 	
 	
 qcg.pilotjob.scheduler	

 	
 	
 qcg.pilotjob.scheduleralgo	

 	
 	
 qcg.pilotjob.slurmres	

 	
 	
 qcg.pilotjob.tests	

 	
 	
 qcg.pilotjob.tests.job_stats	

 	
 	
 qcg.pilotjob.utils	

 	
 	
 qcg.pilotjob.utils.auxdir	

 	
 	
 qcg.pilotjob.utils.proc_traces	

 	
 	
 qcg.pilotjob.utils.reportstats	

 	
 	
 qcg.pilotjob.utils.slurmenvresources	

 	
 	
 qcg.pilotjob.utils.util	

 	
 	
 qcg.pilotjob.zmqinterface	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	_active_allocations (qcg.pilotjob.scheduler.Scheduler attribute)

 	_binding (qcg.pilotjob.resources.Resources attribute)

 	_core_ids (qcg.pilotjob.resources.Node attribute)

 	_cores (qcg.pilotjob.allocation.Allocation attribute)

 	(qcg.pilotjob.allocation.NodeAllocation attribute)

 	_crs (qcg.pilotjob.allocation.NodeAllocation attribute)

 	(qcg.pilotjob.resources.Node attribute)

 	_execution (qcg.pilotjob.joblist.Job attribute)

 	_free (qcg.pilotjob.resources.CRBind attribute)

 	_free_cores (qcg.pilotjob.resources.Node attribute)

 	_handler (qcg.pilotjob.receiver.Receiver attribute)

 	_handlers (qcg.pilotjob.receiver.Receiver attribute)

 	_history (qcg.pilotjob.joblist.Job attribute)

 	_ifaces (qcg.pilotjob.receiver.Receiver attribute)

 	_iteration (qcg.pilotjob.joblist.Job attribute)

 	_jmap (qcg.pilotjob.joblist.JobList attribute)

 	_job_idx (qcg.pilotjob.api.job.Jobs attribute)

 	_list (qcg.pilotjob.api.job.Jobs attribute)

 	_max_crs (qcg.pilotjob.resources.Resources attribute)

 	_messages (qcg.pilotjob.joblist.Job attribute)

 	_name (qcg.pilotjob.joblist.Job attribute)

 	(qcg.pilotjob.resources.Node attribute)

 	
 	_node (qcg.pilotjob.allocation.NodeAllocation attribute)

 	_nodes (qcg.pilotjob.allocation.Allocation attribute)

 	(qcg.pilotjob.resources.Resources attribute)

 	_queue_pos (qcg.pilotjob.joblist.Job attribute)

 	_resources (qcg.pilotjob.joblist.Job attribute)

 	(qcg.pilotjob.scheduler.Scheduler attribute)

 	_runtime (qcg.pilotjob.joblist.Job attribute)

 	_scheduler_alg (qcg.pilotjob.scheduler.Scheduler attribute)

 	_state (qcg.pilotjob.joblist.Job attribute)

 	_subjobs (qcg.pilotjob.joblist.Job attribute)

 	_subjobs_failed (qcg.pilotjob.joblist.Job attribute)

 	_subjobs_not_finished (qcg.pilotjob.joblist.Job attribute)

 	_system_allocation (qcg.pilotjob.resources.Resources attribute)

 	_tasks (qcg.pilotjob.receiver.Receiver attribute)

 	_total_cores (qcg.pilotjob.resources.Node attribute)

 	(qcg.pilotjob.resources.Resources attribute)

 	_total_crs (qcg.pilotjob.resources.Resources attribute)

 	_type (qcg.pilotjob.resources.Resources attribute)

 	_used_cores (qcg.pilotjob.resources.Resources attribute)

 	_zmq_address (qcg.pilotjob.receiver.Receiver attribute)

A

 	
 	add() (qcg.pilotjob.api.job.Jobs method)

 	(qcg.pilotjob.joblist.JobList method)

 	add_node() (qcg.pilotjob.allocation.Allocation method)

 	add_std() (qcg.pilotjob.api.job.Jobs method)

 	address (qcg.pilotjob.publisher.StatusPublisher attribute)

 	(qcg.pilotjob.zmqinterface.ZMQInterface attribute)

 	ADDRESS_FILE (qcg.pilotjob.config.Config attribute)

 	agents (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	all_jobs_finished() (qcg.pilotjob.resume.StateTracker method)

 	allocate() (qcg.pilotjob.resources.CR method)

 	(qcg.pilotjob.resources.CRBind method)

 	allocate_cores() (qcg.pilotjob.scheduler.Scheduler method)

 	(qcg.pilotjob.scheduleralgo.SchedulerAlgorithm method)

 	allocate_crs() (qcg.pilotjob.resources.Node method)

 	allocate_exact() (qcg.pilotjob.resources.Node method)

 	allocate_for_system() (qcg.pilotjob.resources.Resources method)

 	allocate_job() (qcg.pilotjob.scheduler.Scheduler method)

 	(qcg.pilotjob.scheduleralgo.SchedulerAlgorithm method)

 	
 	allocate_max() (qcg.pilotjob.resources.Node method)

 	Allocation (class in qcg.pilotjob.allocation)

 	allocation_jobs() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	analyze_job_report() (in module qcg.pilotjob.tests.job_stats)

 	append_message() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

 	append_runtime() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

 	AppSchedulerError

 	args (qcg.pilotjob.joblist.JobExecution attribute)

 	attributes (qcg.pilotjob.joblist.Job attribute)

 	AUX_DIR (qcg.pilotjob.config.Config attribute)

 	aux_dir (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	available (qcg.pilotjob.resources.CR attribute)

 	(qcg.pilotjob.resources.CRBind attribute)

 	(qcg.pilotjob.resources.Node attribute)

B

 	
 	BasicTemplate (class in qcg.pilotjob.executor_api.templates.basic_template)

 	binding (qcg.pilotjob.resources.Resources attribute)

 	
 	buffer (qcg.pilotjob.reports.JobReport attribute)

 	buffer_size (qcg.pilotjob.reports.JobReport attribute)

 	buffered_entries (qcg.pilotjob.reports.JobReport attribute)

C

 	
 	cancel() (qcg.pilotjob.api.manager.Manager method)

 	(qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture method)

 	(qcg.pilotjob.launcher.launcher.Launcher method)

 	cancel_listeners() (qcg.pilotjob.receiver.Receiver method)

 	CANCELED (qcg.pilotjob.joblist.JobState attribute)

 	CancelJobReq (class in qcg.pilotjob.request)

 	cancelled() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture method)

 	check_min_job_requirements() (qcg.pilotjob.resources.Resources method)

 	check_timeout() (qcg.pilotjob.api.manager.TimeStamp method)

 	childs (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	childs_on_other_nodes() (qcg.pilotjob.utils.proc_traces.ProcTraces method)

 	cleanup() (qcg.pilotjob.api.manager.Manager method)

 	clear() (qcg.pilotjob.api.job.Jobs method)

 	clear_queue_pos() (qcg.pilotjob.joblist.Job method)

 	ClientLogLevel (class in qcg.pilotjob.executor_api.qcgpj_executor)

 	close() (qcg.pilotjob.fileinterface.FileInterface method)

 	(qcg.pilotjob.zmqinterface.ZMQInterface method)

 	cnt (qcg.pilotjob.fileinterface.FileInterface attribute)

 	code (qcg.pilotjob.response.Response attribute)

 	command (qcg.pilotjob.request.ControlReq attribute)

 	CommonEnvironment (class in qcg.pilotjob.environment)

 	Config (class in qcg.pilotjob.config)

 	
 	config (qcg.pilotjob.executionschema.ExecutionSchema attribute)

 	ConnectionError

 	ControlReq (class in qcg.pilotjob.request)

 	cores (qcg.pilotjob.allocation.Allocation attribute)

 	(qcg.pilotjob.allocation.NodeAllocation attribute)

 	(qcg.pilotjob.joblist.JobResources attribute)

 	count (qcg.pilotjob.allocation.CRAllocation attribute)

 	(qcg.pilotjob.allocation.CRBindAllocation attribute)

 	CPU_BIND() (qcg.pilotjob.slurmres.SlurmArg method)

 	CR (class in qcg.pilotjob.resources)

 	CRAllocation (class in qcg.pilotjob.allocation)

 	CRBind (class in qcg.pilotjob.resources)

 	CRBindAllocation (class in qcg.pilotjob.allocation)

 	CRITICAL (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel attribute)

 	crs (qcg.pilotjob.allocation.NodeAllocation attribute)

 	(qcg.pilotjob.joblist.JobResources attribute)

 	(qcg.pilotjob.resources.Node attribute)

 	CRType (class in qcg.pilotjob.resources)

 	crtype (qcg.pilotjob.allocation.CRAllocation attribute)

 	(qcg.pilotjob.allocation.CRBindAllocation attribute)

 	(qcg.pilotjob.resources.CR attribute)

 	(qcg.pilotjob.resources.CRBind attribute)

D

 	
 	data (qcg.pilotjob.response.Response attribute)

 	DEBUG (qcg.pilotjob.executor_api.qcgpj_executor.ClientLogLevel attribute)

 	(qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel attribute)

 	decode_published_data() (qcg.pilotjob.publisher.StatusPublisher static method)

 	DEFAULT_ADDRESS (qcg.pilotjob.api.manager.Manager attribute)

 	DEFAULT_ADDRESS_ENV (qcg.pilotjob.api.manager.Manager attribute)

 	DEFAULT_POLL_DELAY (qcg.pilotjob.api.manager.Manager attribute)

 	DEFAULT_PORT (qcg.pilotjob.api.manager.Manager attribute)

 	
 	DEFAULT_PROTO (qcg.pilotjob.api.manager.Manager attribute)

 	DEFAULT_PUB_TIMEOUT (qcg.pilotjob.api.manager.Manager attribute)

 	DefaultScheduler (in module qcg.pilotjob.iterscheduler)

 	dependencies (qcg.pilotjob.joblist.Job attribute)

 	description() (qcg.pilotjob.allocation.Allocation method)

 	DirectExecution (class in qcg.pilotjob.executionschema)

 	DISABLE_NL (qcg.pilotjob.config.Config attribute)

 	DISABLE_PUBLISHER (qcg.pilotjob.config.Config attribute)

 	done() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture method)

E

 	
 	efficiency() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	efficiency_core() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	ENABLE_PROC_STATS (qcg.pilotjob.config.Config attribute)

 	ENABLE_RT_STATS (qcg.pilotjob.config.Config attribute)

 	encode_published_data() (qcg.pilotjob.publisher.StatusPublisher static method)

 	entity (qcg.pilotjob.request.NotifyReq attribute)

 	(qcg.pilotjob.request.RegisterReq attribute)

 	env (qcg.pilotjob.joblist.JobExecution attribute)

 	Environment (class in qcg.pilotjob.environment)

 	ENVIRONMENT_SCHEMA (qcg.pilotjob.config.Config attribute)

 	ERROR (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel attribute)

 	(qcg.pilotjob.receiver.ResponseStatus attribute)

 	(qcg.pilotjob.response.ResponseCode attribute)

 	error() (qcg.pilotjob.receiver.ValidateResponse method)

 	(qcg.pilotjob.response.Response class method)

 	
 	EventTopic (class in qcg.pilotjob.publisher)

 	exact (qcg.pilotjob.joblist.ResourceSize attribute)

 	exec (qcg.pilotjob.joblist.JobExecution attribute)

 	EXEC_NAME (qcg.pilotjob.executionschema.DirectExecution attribute)

 	(qcg.pilotjob.executionschema.SlurmExecution attribute)

 	EXECUTING (qcg.pilotjob.joblist.JobState attribute)

 	execution (qcg.pilotjob.joblist.Job attribute)

 	EXECUTION_NODES (qcg.pilotjob.config.Config attribute)

 	ExecutionSchema (class in qcg.pilotjob.executionschema)

 	EXECUTOR_WD (qcg.pilotjob.config.Config attribute)

 	exist() (qcg.pilotjob.joblist.JobList method)

 	external_address (qcg.pilotjob.publisher.StatusPublisher attribute)

 	(qcg.pilotjob.zmqinterface.ZMQInterface attribute)

F

 	
 	FAILED (qcg.pilotjob.joblist.JobState attribute)

 	FILE_PATH (qcg.pilotjob.config.Config attribute)

 	FileError

 	FileInterface (class in qcg.pilotjob.fileinterface)

 	filter_jobs() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	FINAL_STATUS_FILE (qcg.pilotjob.config.Config attribute)

 	find_aux_dirs() (in module qcg.pilotjob.utils.auxdir)

 	find_final_status_files() (in module qcg.pilotjob.utils.auxdir)

 	find_latest_aux_dir() (in module qcg.pilotjob.utils.auxdir)

 	find_log_files() (in module qcg.pilotjob.utils.auxdir)

 	find_proc_traces_files() (in module qcg.pilotjob.utils.auxdir)

 	find_report_files() (in module qcg.pilotjob.utils.auxdir)

 	find_rtimes_files() (in module qcg.pilotjob.utils.auxdir)

 	find_single_aux_dir() (in module qcg.pilotjob.utils.auxdir)

 	find_slurm_version() (in module qcg.pilotjob.slurmres)

 	finish() (qcg.pilotjob.api.manager.LocalManager method)

 	(qcg.pilotjob.api.manager.Manager method)

 	
 	finish_callback() (in module qcg.pilotjob.launcher.launcher)

 	finish_callback_default() (in module qcg.pilotjob.launcher.launcher)

 	finished (qcg.pilotjob.receiver.Receiver attribute)

 	finished_file (qcg.pilotjob.resume.StateTracker attribute)

 	FinishReq (class in qcg.pilotjob.request)

 	flush() (qcg.pilotjob.reports.JobReport method)

 	free (qcg.pilotjob.resources.Node attribute)

 	free_cores (qcg.pilotjob.resources.Resources attribute)

 	free_ids (qcg.pilotjob.resources.Node attribute)

 	from_child() (qcg.pilotjob.api.jobinfo.JobInfo static method)

 	from_dict() (qcg.pilotjob.resources.CR static method)

 	(qcg.pilotjob.resources.CRBind static method)

 	(qcg.pilotjob.resources.Node static method)

 	(qcg.pilotjob.resources.Resources static method)

 	from_job() (qcg.pilotjob.api.jobinfo.JobInfo static method)

 	from_workdir() (qcg.pilotjob.utils.reportstats.JobsReportStats static method)

G

 	
 	gantt() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	gantt_gaps() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	gather() (qcg.pilotjob.launcher.rtstats.RunTimeStats method)

 	generate() (qcg.pilotjob.iterscheduler.MaximumIters method)

 	(qcg.pilotjob.iterscheduler.SplitInto method)

 	generate_status_response() (qcg.pilotjob.receiver.Receiver method)

 	get() (qcg.pilotjob.config.Config method)

 	(qcg.pilotjob.joblist.JobList method)

 	get_allocation_data() (in module qcg.pilotjob.slurmres)

 	get_env_opts() (qcg.pilotjob.executionschema.DirectExecution method)

 	(qcg.pilotjob.executionschema.ExecutionSchema method)

 	(qcg.pilotjob.executionschema.SlurmExecution method)

 	get_environment() (in module qcg.pilotjob.environment)

 	get_events_timeout() (qcg.pilotjob.api.manager.TimeStamp method)

 	get_exact_iter_plan() (qcg.pilotjob.iterscheduler.IterScheduler static method)

 	
 	get_failed_iterations() (qcg.pilotjob.joblist.Job method)

 	get_min_num_cores() (qcg.pilotjob.joblist.JobResources method)

 	get_name() (qcg.pilotjob.joblist.Job method)

 	get_not_finished_iterations() (qcg.pilotjob.joblist.Job method)

 	get_num_slurm_nodes() (in module qcg.pilotjob.slurmres)

 	get_poll_time() (qcg.pilotjob.api.manager.TimeStamp method)

 	get_process() (qcg.pilotjob.utils.proc_traces.ProcTraces method)

 	get_reporter() (in module qcg.pilotjob.reports)

 	get_resources() (in module qcg.pilotjob.parseres)

 	get_scheduler() (qcg.pilotjob.iterscheduler.IterScheduler class method)

 	get_schema() (qcg.pilotjob.executionschema.ExecutionSchema class method)

 	get_slurm_version() (in module qcg.pilotjob.slurmres)

 	global_stats() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	GOVERNOR (qcg.pilotjob.config.Config attribute)

 	GovernorConnectionError

 	GPU (qcg.pilotjob.resources.CRType attribute)

H

 	
 	has_cores (qcg.pilotjob.joblist.JobResources attribute)

 	has_crs (qcg.pilotjob.joblist.JobResources attribute)

 	has_dependencies (qcg.pilotjob.joblist.Job attribute)

 	(qcg.pilotjob.joblist.JobDependencies attribute)

 	has_enough_crs() (qcg.pilotjob.resources.Node method)

 	
 	has_iterations (qcg.pilotjob.joblist.Job attribute)

 	has_nodes (qcg.pilotjob.joblist.JobResources attribute)

 	has_realtime_stats() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	history (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	history() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

I

 	
 	ids (qcg.pilotjob.resources.CRBind attribute)

 	(qcg.pilotjob.resources.Node attribute)

 	iface_task (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	IllegalJobDescription

 	IllegalResourceRequirements

 	in_range() (qcg.pilotjob.joblist.JobIteration method)

 	in_slurm_allocation() (in module qcg.pilotjob.slurmres)

 	in_socket (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	include_childs (qcg.pilotjob.request.JobInfoReq attribute)

 	INFO (qcg.pilotjob.executor_api.qcgpj_executor.ClientLogLevel attribute)

 	(qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel attribute)

 	info() (qcg.pilotjob.api.manager.Manager method)

 	info_parsed() (qcg.pilotjob.api.manager.Manager method)

 	instances (qcg.pilotjob.allocation.CRBindAllocation attribute)

 	interfaces (qcg.pilotjob.receiver.Receiver attribute)

 	InternalError, [1]

 	InvalidAllocation

 	InvalidArgument

 	InvalidJobDescriptionError

 	
 	InvalidRequest

 	InvalidResourceSpec

 	is_aux_dir() (in module qcg.pilotjob.utils.auxdir)

 	is_error (qcg.pilotjob.receiver.ValidateResponse attribute)

 	is_exact() (qcg.pilotjob.joblist.ResourceSize method)

 	is_finished (qcg.pilotjob.receiver.Receiver attribute)

 	is_finished() (qcg.pilotjob.joblist.JobState method)

 	is_notebook() (qcg.pilotjob.api.manager.LocalManager static method)

 	is_status_finished() (qcg.pilotjob.api.manager.Manager static method)

 	is_success (qcg.pilotjob.receiver.ValidateResponse attribute)

 	iteration (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	(qcg.pilotjob.joblist.Job attribute)

 	ITERATION_FINISHED (qcg.pilotjob.publisher.EventTopic attribute)

 	iteration_states (qcg.pilotjob.joblist.Job attribute)

 	ITERATION_STATUS (qcg.pilotjob.publisher.EventTopic attribute)

 	iteration_value() (qcg.pilotjob.joblist.JobIteration method)

 	iterations (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	iterations() (qcg.pilotjob.joblist.JobIteration method)

 	iterations_gen() (qcg.pilotjob.joblist.JobIteration method)

 	IterScheduler (class in qcg.pilotjob.iterscheduler)

J

 	
 	Job (class in qcg.pilotjob.joblist)

 	JOB_FINISHED (qcg.pilotjob.publisher.EventTopic attribute)

 	job_finished() (qcg.pilotjob.resume.StateTracker method)

 	job_info() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	JOB_MODELS (qcg.pilotjob.executionschema.SlurmExecution attribute)

 	job_names (qcg.pilotjob.request.CancelJobReq attribute)

 	(qcg.pilotjob.request.JobInfoReq attribute)

 	(qcg.pilotjob.request.JobStatusReq attribute)

 	(qcg.pilotjob.request.RemoveJobReq attribute)

 	job_names() (qcg.pilotjob.api.job.Jobs method)

 	job_start_finish_launch_overheads() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	job_stats() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	JOB_STATUS (qcg.pilotjob.publisher.EventTopic attribute)

 	JobAlreadyExist

 	JobDependencies (class in qcg.pilotjob.joblist)

 	JobExecution (class in qcg.pilotjob.joblist)

 	JobFileNotExist

 	
 	JobInfo (class in qcg.pilotjob.api.jobinfo)

 	JobInfoReq (class in qcg.pilotjob.request)

 	JobIteration (class in qcg.pilotjob.joblist)

 	JobList (class in qcg.pilotjob.joblist)

 	JobNotDefinedError

 	JobReport (class in qcg.pilotjob.reports)

 	JobResources (class in qcg.pilotjob.joblist)

 	Jobs (class in qcg.pilotjob.api.job)

 	jobs (qcg.pilotjob.request.SubmitReq attribute)

 	jobs() (qcg.pilotjob.api.job.Jobs method)

 	(qcg.pilotjob.joblist.JobList method)

 	jobs_cb (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	jobs_def_cb (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	JobsReportStats (class in qcg.pilotjob.utils.reportstats)

 	JobState (class in qcg.pilotjob.joblist)

 	JobStatusReq (class in qcg.pilotjob.request)

 	JsonFileReport (class in qcg.pilotjob.reports)

K

 	
 	kill_manager_process() (qcg.pilotjob.api.manager.LocalManager method)

L

 	
 	Launcher (class in qcg.pilotjob.launcher.launcher)

 	list() (qcg.pilotjob.api.manager.Manager method)

 	ListJobsReq (class in qcg.pilotjob.request)

 	load_from_file() (qcg.pilotjob.api.job.Jobs method)

 	LOCAL (qcg.pilotjob.resources.ResourcesType attribute)

 	
 	local_address (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	local_export_address (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	local_port (qcg.pilotjob.publisher.StatusPublisher attribute)

 	(qcg.pilotjob.zmqinterface.ZMQInterface attribute)

 	LocalManager (class in qcg.pilotjob.api.manager)

 	LOG_LEVEL (qcg.pilotjob.config.Config attribute)

M

 	
 	Manager (class in qcg.pilotjob.api.manager)

 	MANAGER_ID (qcg.pilotjob.config.Config attribute)

 	MANAGER_TAGS (qcg.pilotjob.config.Config attribute)

 	mark_available_cores() (qcg.pilotjob.resources.Resources method)

 	mark_not_available_cores() (qcg.pilotjob.resources.Resources method)

 	max (qcg.pilotjob.joblist.ResourceSize attribute)

 	max_crs (qcg.pilotjob.resources.Resources attribute)

 	MAX_PORT_RANGE (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	MAXIMUM_CONCURRENT_CONNECTIONS (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	MaximumIters (class in qcg.pilotjob.iterscheduler)

 	
 	MEM (qcg.pilotjob.resources.CRType attribute)

 	messages (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	messages() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

 	min (qcg.pilotjob.joblist.ResourceSize attribute)

 	MIN_PORT_RANGE (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	model (qcg.pilotjob.joblist.JobExecution attribute)

 	model_opts (qcg.pilotjob.joblist.JobExecution attribute)

 	modules (qcg.pilotjob.joblist.JobExecution attribute)

 	msg (qcg.pilotjob.receiver.ValidateResponse attribute)

 	(qcg.pilotjob.response.Response attribute)

N

 	
 	name (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	NAME (qcg.pilotjob.environment.CommonEnvironment attribute)

 	(qcg.pilotjob.environment.Environment attribute), [1]

 	(qcg.pilotjob.environment.SlurmEnvironment attribute)

 	name (qcg.pilotjob.joblist.Job attribute)

 	NAME (qcg.pilotjob.reports.JsonFileReport attribute)

 	(qcg.pilotjob.reports.TextFileReport attribute)

 	name (qcg.pilotjob.resources.Node attribute)

 	name() (qcg.pilotjob.fileinterface.FileInterface class method)

 	(qcg.pilotjob.zmqinterface.ZMQInterface class method)

 	ncores (qcg.pilotjob.allocation.NodeAllocation attribute)

 	new_submited_jobs() (qcg.pilotjob.resume.StateTracker method)

 	NL_INIT_TIMEOUT (qcg.pilotjob.config.Config attribute)

 	NL_READY_THRESHOLD (qcg.pilotjob.config.Config attribute)

 	NL_START_METHOD (qcg.pilotjob.config.Config attribute)

 	NO_JOBS (qcg.pilotjob.publisher.EventTopic attribute)

 	
 	Node (class in qcg.pilotjob.resources)

 	node (qcg.pilotjob.allocation.NodeAllocation attribute)

 	node_cores_allocated() (qcg.pilotjob.resources.Resources method)

 	node_cores_released() (qcg.pilotjob.resources.Resources method)

 	node_local_agent_cmd (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	node_ssh_agent_cmd (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	NodeAllocation (class in qcg.pilotjob.allocation)

 	nodes (qcg.pilotjob.allocation.Allocation attribute)

 	(qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	(qcg.pilotjob.joblist.JobResources attribute)

 	(qcg.pilotjob.launcher.launcher.Launcher attribute)

 	(qcg.pilotjob.resources.Resources attribute)

 	none_reporter() (in module qcg.pilotjob.reports)

 	NOTIFY_ENTITY (qcg.pilotjob.request.NotifyReq attribute)

 	NotifyReq (class in qcg.pilotjob.request)

 	NotSufficientResources

O

 	
 	OK (qcg.pilotjob.response.ResponseCode attribute)

 	ok() (qcg.pilotjob.response.Response class method)

 	
 	OMITTED (qcg.pilotjob.joblist.JobState attribute)

 	ordered_job_names() (qcg.pilotjob.api.job.Jobs method)

 	ordered_jobs() (qcg.pilotjob.api.job.Jobs method)

P

 	
 	params (qcg.pilotjob.request.NotifyReq attribute)

 	(qcg.pilotjob.request.RegisterReq attribute)

 	PARENT_MANAGER (qcg.pilotjob.config.Config attribute)

 	parse() (qcg.pilotjob.request.Request class method)

 	(qcg.pilotjob.utils.slurmenvresources.SlurmEnvResources method)

 	parse_datetime() (in module qcg.pilotjob.utils.util)

 	parse_jobname() (qcg.pilotjob.joblist.JobList static method)

 	parse_local_cpus() (in module qcg.pilotjob.slurmres)

 	parse_local_resources() (in module qcg.pilotjob.localres)

 	parse_nodelist() (in module qcg.pilotjob.slurmres)

 	parse_resources_file() (in module qcg.pilotjob.parseres)

 	parse_slurm_allocation_cpu_ids() (in module qcg.pilotjob.slurmres)

 	parse_slurm_cpu_binding() (in module qcg.pilotjob.slurmres)

 	
 	parse_slurm_env_binding() (in module qcg.pilotjob.slurmres)

 	parse_slurm_job_cpus() (in module qcg.pilotjob.slurmres)

 	parse_slurm_resources() (in module qcg.pilotjob.slurmres)

 	path (qcg.pilotjob.fileinterface.FileInterface attribute)

 	pipe_path (qcg.pilotjob.launcher.rtstats.RunTimeStats attribute)

 	preprocess() (qcg.pilotjob.executionschema.DirectExecution method)

 	(qcg.pilotjob.executionschema.ExecutionSchema method)

 	(qcg.pilotjob.executionschema.SlurmExecution method)

 	process_iterator() (qcg.pilotjob.utils.proc_traces.ProcTraces method)

 	ProcTraces (class in qcg.pilotjob.utils.proc_traces)

 	profile_dummy() (in module qcg.pilotjob.profile)

 	PROGRESS (qcg.pilotjob.config.Config attribute)

 	publish() (qcg.pilotjob.publisher.StatusPublisher method)

Q

 	
 	qcg.pilotjob.allocation (module)

 	qcg.pilotjob.api (module), [1]

 	qcg.pilotjob.api.errors (module)

 	qcg.pilotjob.api.job (module)

 	qcg.pilotjob.api.jobinfo (module)

 	qcg.pilotjob.api.manager (module)

 	qcg.pilotjob.cmds (module)

 	qcg.pilotjob.config (module)

 	qcg.pilotjob.environment (module)

 	qcg.pilotjob.errors (module)

 	qcg.pilotjob.executionschema (module)

 	qcg.pilotjob.executor_api (module)

 	qcg.pilotjob.executor_api.qcgpj_executor (module)

 	qcg.pilotjob.executor_api.qcgpj_future (module)

 	qcg.pilotjob.executor_api.templates (module)

 	qcg.pilotjob.executor_api.templates.basic_template (module)

 	qcg.pilotjob.executor_api.templates.qcgpj_template (module)

 	qcg.pilotjob.fileinterface (module)

 	qcg.pilotjob.iterscheduler (module)

 	qcg.pilotjob.joblist (module)

 	qcg.pilotjob.launcher (module)

 	qcg.pilotjob.launcher.launcher (module)

 	qcg.pilotjob.launcher.rtstats (module)

 	qcg.pilotjob.localres (module)

 	qcg.pilotjob.logger (module)

 	qcg.pilotjob.parseres (module)

 	
 	qcg.pilotjob.profile (module)

 	qcg.pilotjob.publisher (module)

 	qcg.pilotjob.receiver (module)

 	qcg.pilotjob.reports (module)

 	qcg.pilotjob.request (module)

 	qcg.pilotjob.resources (module)

 	qcg.pilotjob.response (module)

 	qcg.pilotjob.resume (module)

 	qcg.pilotjob.scheduler (module)

 	qcg.pilotjob.scheduleralgo (module)

 	qcg.pilotjob.slurmres (module)

 	qcg.pilotjob.tests (module)

 	qcg.pilotjob.tests.job_stats (module)

 	qcg.pilotjob.utils (module)

 	qcg.pilotjob.utils.auxdir (module)

 	qcg.pilotjob.utils.proc_traces (module)

 	qcg.pilotjob.utils.reportstats (module)

 	qcg.pilotjob.utils.slurmenvresources (module)

 	qcg.pilotjob.utils.util (module)

 	qcg.pilotjob.zmqinterface (module)

 	qcgpj_manager (qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor attribute)

 	QCGPJExecutor (class in qcg.pilotjob.executor_api.qcgpj_executor)

 	QCGPJFuture (class in qcg.pilotjob.executor_api.qcgpj_future)

 	QCGPJMAError

 	QCGPJTemplate (class in qcg.pilotjob.executor_api.templates.qcgpj_template)

 	queue_pos() (qcg.pilotjob.joblist.Job method)

 	QUEUED (qcg.pilotjob.joblist.JobState attribute)

R

 	
 	range (qcg.pilotjob.joblist.ResourceSize attribute)

 	read() (qcg.pilotjob.utils.proc_traces.ProcTraces method)

 	real_address (qcg.pilotjob.zmqinterface.ZMQInterface attribute)

 	receive() (qcg.pilotjob.fileinterface.FileInterface method)

 	(qcg.pilotjob.zmqinterface.ZMQInterface method)

 	Receiver (class in qcg.pilotjob.receiver)

 	RegisterReq (class in qcg.pilotjob.request)

 	release() (qcg.pilotjob.allocation.Allocation method)

 	(qcg.pilotjob.allocation.NodeAllocation method)

 	(qcg.pilotjob.resources.CR method)

 	(qcg.pilotjob.resources.CRBind method)

 	(qcg.pilotjob.resources.Node method)

 	release_allocation() (qcg.pilotjob.scheduler.Scheduler method)

 	remove() (qcg.pilotjob.api.job.Jobs method)

 	(qcg.pilotjob.api.manager.Manager method)

 	(qcg.pilotjob.joblist.JobList method)

 	RemoveJobReq (class in qcg.pilotjob.request)

 	reply() (qcg.pilotjob.fileinterface.FileInterface method)

 	(qcg.pilotjob.zmqinterface.ZMQInterface method)

 	REPORT_FILE (qcg.pilotjob.config.Config attribute)

 	report_file (qcg.pilotjob.reports.JobReport attribute)

 	REPORT_FORMAT (qcg.pilotjob.config.Config attribute)

 	report_job() (qcg.pilotjob.reports.JobReport method)

 	report_job_entry() (qcg.pilotjob.reports.JobReport method)

 	(qcg.pilotjob.reports.JsonFileReport method)

 	(qcg.pilotjob.reports.TextFileReport method)

 	REQ_CNT (qcg.pilotjob.request.SubmitReq attribute)

 	REQ_CONTROL_CMD_FINISHAFTERALLTASKSDONE (qcg.pilotjob.request.ControlReq attribute)

 	REQ_CONTROL_CMDS (qcg.pilotjob.request.ControlReq attribute)

 	REQ_NAME (qcg.pilotjob.request.CancelJobReq attribute)

 	(qcg.pilotjob.request.ControlReq attribute)

 	(qcg.pilotjob.request.FinishReq attribute)

 	(qcg.pilotjob.request.JobInfoReq attribute)

 	(qcg.pilotjob.request.JobStatusReq attribute)

 	(qcg.pilotjob.request.ListJobsReq attribute)

 	(qcg.pilotjob.request.NotifyReq attribute)

 	(qcg.pilotjob.request.RegisterReq attribute)

 	(qcg.pilotjob.request.RemoveJobReq attribute)

 	(qcg.pilotjob.request.ResourcesInfoReq attribute)

 	(qcg.pilotjob.request.StatusReq attribute)

 	(qcg.pilotjob.request.SubmitReq attribute)

 	
 	REQ_REGISTER_ENTITIES (qcg.pilotjob.request.RegisterReq attribute)

 	reqs_file (qcg.pilotjob.resume.StateTracker attribute)

 	Request (class in qcg.pilotjob.request)

 	request (qcg.pilotjob.receiver.ValidateResponse attribute)

 	resource_usage() (qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	Resources (class in qcg.pilotjob.resources)

 	RESOURCES (qcg.pilotjob.config.Config attribute)

 	resources (qcg.pilotjob.executionschema.ExecutionSchema attribute)

 	(qcg.pilotjob.joblist.Job attribute)

 	(qcg.pilotjob.resources.Node attribute)

 	(qcg.pilotjob.scheduleralgo.SchedulerAlgorithm attribute)

 	resources() (qcg.pilotjob.api.manager.Manager method)

 	(qcg.pilotjob.utils.reportstats.JobsReportStats method)

 	ResourcesInfoReq (class in qcg.pilotjob.request)

 	ResourceSize (class in qcg.pilotjob.joblist)

 	ResourcesType (class in qcg.pilotjob.resources)

 	Response (class in qcg.pilotjob.response)

 	ResponseCode (class in qcg.pilotjob.response)

 	ResponseStatus (class in qcg.pilotjob.receiver)

 	result (qcg.pilotjob.receiver.ValidateResponse attribute)

 	result() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture method)

 	RESUME (qcg.pilotjob.config.Config attribute)

 	resume() (qcg.pilotjob.resume.StateTracker static method)

 	ResumeError

 	rt_stats (qcg.pilotjob.launcher.rtstats.RunTimeStats attribute)

 	rtype (qcg.pilotjob.resources.Resources attribute)

 	run() (qcg.pilotjob.receiver.Receiver method)

 	run_job() (in module qcg.pilotjob.launcher.launcher)

 	running() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture method)

 	runtime() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

 	RunTimeStats (class in qcg.pilotjob.launcher.rtstats)

S

 	
 	save_to_file() (qcg.pilotjob.api.job.Jobs method)

 	SCHED_NAME (qcg.pilotjob.iterscheduler.MaximumIters attribute)

 	(qcg.pilotjob.iterscheduler.SplitInto attribute)

 	SCHEDULED (qcg.pilotjob.joblist.JobState attribute)

 	Scheduler (class in qcg.pilotjob.scheduler)

 	scheduler (qcg.pilotjob.joblist.ResourceSize attribute)

 	SchedulerAlgorithm (class in qcg.pilotjob.scheduleralgo)

 	secs_from_start (qcg.pilotjob.api.manager.TimeStamp attribute)

 	send_request() (qcg.pilotjob.api.manager.Manager method)

 	ServiceError

 	ServiceLogLevel (class in qcg.pilotjob.executor_api.qcgpj_executor)

 	set_available_core_ids() (qcg.pilotjob.resources.Node method)

 	set_finish() (qcg.pilotjob.receiver.Receiver method)

 	set_job_finish_callback() (qcg.pilotjob.launcher.launcher.Launcher method)

 	set_queue_pos() (qcg.pilotjob.joblist.Job method)

 	set_state() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

 	setup() (qcg.pilotjob.fileinterface.FileInterface method)

 	(qcg.pilotjob.publisher.StatusPublisher method)

 	(qcg.pilotjob.zmqinterface.ZMQInterface method)

 	shutdown() (qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor method)

 	SHUTDOWN_TIMEOUT_SECS (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	Singletone (class in qcg.pilotjob.utils.util)

 	SLURM (qcg.pilotjob.resources.ResourcesType attribute)

 	SLURM_LIMIT_NODES_RANGE_BEGIN (qcg.pilotjob.config.Config attribute)

 	SLURM_LIMIT_NODES_RANGE_END (qcg.pilotjob.config.Config attribute)

 	SLURM_PARTITION_NODES (qcg.pilotjob.config.Config attribute)

 	SLURM_RESOURCES_FILE (qcg.pilotjob.config.Config attribute)

 	SlurmArg (class in qcg.pilotjob.slurmres)

 	SlurmEnvError

 	SlurmEnvironment (class in qcg.pilotjob.environment)

 	SlurmEnvResources (class in qcg.pilotjob.utils.slurmenvresources)

 	
 	SlurmExecution (class in qcg.pilotjob.executionschema)

 	socket (qcg.pilotjob.publisher.StatusPublisher attribute)

 	(qcg.pilotjob.zmqinterface.ZMQInterface attribute)

 	SplitInto (class in qcg.pilotjob.iterscheduler)

 	start() (qcg.pilotjob.launcher.launcher.Launcher method)

 	START_TIMEOUT_SECS (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	state() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.SubJobState method)

 	StateTracker (class in qcg.pilotjob.resume)

 	stats() (qcg.pilotjob.joblist.JobState method)

 	status (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	status() (qcg.pilotjob.api.manager.Manager method)

 	StatusPublisher (class in qcg.pilotjob.publisher)

 	StatusReq (class in qcg.pilotjob.request)

 	stderr (qcg.pilotjob.joblist.JobExecution attribute)

 	stdin (qcg.pilotjob.joblist.JobExecution attribute)

 	stdout (qcg.pilotjob.joblist.JobExecution attribute)

 	stop() (qcg.pilotjob.launcher.launcher.Launcher method)

 	(qcg.pilotjob.publisher.StatusPublisher method)

 	(qcg.pilotjob.receiver.Receiver method)

 	str_crs (qcg.pilotjob.resources.Node attribute)

 	str_state() (qcg.pilotjob.joblist.Job method)

 	SubJobState (class in qcg.pilotjob.joblist)

 	submit() (qcg.pilotjob.api.manager.Manager method)

 	(qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor method)

 	(qcg.pilotjob.launcher.launcher.Launcher method)

 	SubmitReq (class in qcg.pilotjob.request)

 	SUCCEED (qcg.pilotjob.joblist.JobState attribute)

 	SUCCESS (qcg.pilotjob.receiver.ResponseStatus attribute)

 	success() (qcg.pilotjob.receiver.ValidateResponse method)

 	SYSTEM_CORE (qcg.pilotjob.config.Config attribute)

 	system_status() (qcg.pilotjob.api.manager.Manager method)

T

 	
 	template() (qcg.pilotjob.executor_api.templates.basic_template.BasicTemplate static method)

 	(qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate static method)

 	test() (in module qcg.pilotjob.launcher.launcher)

 	test_environment() (in module qcg.pilotjob.slurmres)

 	TextFileReport (class in qcg.pilotjob.reports)

 	time (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	TimeoutElapsed

 	TimeStamp (class in qcg.pilotjob.api.manager)

 	to_dict() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.JobDependencies method)

 	(qcg.pilotjob.joblist.JobExecution method)

 	(qcg.pilotjob.joblist.JobIteration method)

 	(qcg.pilotjob.joblist.JobResources method)

 	(qcg.pilotjob.joblist.ResourceSize method)

 	(qcg.pilotjob.request.CancelJobReq method)

 	(qcg.pilotjob.request.ControlReq method)

 	(qcg.pilotjob.request.FinishReq method)

 	(qcg.pilotjob.request.JobInfoReq method)

 	(qcg.pilotjob.request.JobStatusReq method)

 	(qcg.pilotjob.request.ListJobsReq method)

 	(qcg.pilotjob.request.NotifyReq method)

 	(qcg.pilotjob.request.RegisterReq method)

 	(qcg.pilotjob.request.RemoveJobReq method)

 	(qcg.pilotjob.request.ResourcesInfoReq method)

 	(qcg.pilotjob.request.StatusReq method)

 	(qcg.pilotjob.request.SubmitReq method)

 	(qcg.pilotjob.resources.CR method)

 	(qcg.pilotjob.resources.CRBind method)

 	(qcg.pilotjob.resources.Node method)

 	(qcg.pilotjob.resources.Resources method)

 	(qcg.pilotjob.response.Response method)

 	
 	to_json() (qcg.pilotjob.joblist.Job method)

 	(qcg.pilotjob.joblist.JobDependencies method)

 	(qcg.pilotjob.joblist.JobExecution method)

 	(qcg.pilotjob.joblist.JobIteration method)

 	(qcg.pilotjob.joblist.JobResources method)

 	(qcg.pilotjob.joblist.ResourceSize method)

 	(qcg.pilotjob.request.CancelJobReq method)

 	(qcg.pilotjob.request.ControlReq method)

 	(qcg.pilotjob.request.FinishReq method)

 	(qcg.pilotjob.request.JobInfoReq method)

 	(qcg.pilotjob.request.JobStatusReq method)

 	(qcg.pilotjob.request.ListJobsReq method)

 	(qcg.pilotjob.request.NotifyReq method)

 	(qcg.pilotjob.request.RegisterReq method)

 	(qcg.pilotjob.request.RemoveJobReq method)

 	(qcg.pilotjob.request.ResourcesInfoReq method)

 	(qcg.pilotjob.request.StatusReq method)

 	(qcg.pilotjob.request.SubmitReq method)

 	(qcg.pilotjob.resources.Node method)

 	(qcg.pilotjob.resources.Resources method)

 	(qcg.pilotjob.response.Response method)

 	total (qcg.pilotjob.resources.Node attribute)

 	total_cores (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	(qcg.pilotjob.resources.Resources attribute)

 	total_count (qcg.pilotjob.resources.CR attribute)

 	(qcg.pilotjob.resources.CRBind attribute)

 	total_crs (qcg.pilotjob.resources.Resources attribute)

 	total_nodes (qcg.pilotjob.resources.Resources attribute)

U

 	
 	UNKNOWN (qcg.pilotjob.receiver.ResponseStatus attribute)

 	UnknownEventTopic

 	update_env() (qcg.pilotjob.environment.CommonEnvironment method)

 	(qcg.pilotjob.environment.Environment method)

 	(qcg.pilotjob.environment.SlurmEnvironment method)

 	
 	used (qcg.pilotjob.resources.CR attribute)

 	(qcg.pilotjob.resources.CRBind attribute)

 	(qcg.pilotjob.resources.Node attribute)

 	used_cores (qcg.pilotjob.resources.Resources attribute)

V

 	
 	validate_jobname() (qcg.pilotjob.joblist.Job static method)

 	
 	ValidateResponse (class in qcg.pilotjob.receiver)

 	venv (qcg.pilotjob.joblist.JobExecution attribute)

W

 	
 	wait4() (qcg.pilotjob.api.manager.Manager method)

 	wait4_any_job_finish() (qcg.pilotjob.api.manager.Manager method)

 	wait4all() (qcg.pilotjob.api.manager.Manager method)

 	WARNING (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel attribute)

 	wd (qcg.pilotjob.joblist.JobExecution attribute)

 	
 	wdir (qcg.pilotjob.api.jobinfo.JobInfo attribute)

 	work_dir (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	WRAPPER_RT_STATS (qcg.pilotjob.config.Config attribute)

 	WrongArgumentsError

 	WrongEventFormat

Z

 	
 	zmq_address (qcg.pilotjob.receiver.Receiver attribute)

 	zmq_ctx (qcg.pilotjob.launcher.launcher.Launcher attribute)

 	(qcg.pilotjob.publisher.StatusPublisher attribute)

 	(qcg.pilotjob.zmqinterface.ZMQInterface attribute)

 	ZMQ_IFACE_ADDRESS (qcg.pilotjob.config.Config attribute)

 	ZMQ_IP_ADDRESS (qcg.pilotjob.config.Config attribute)

 	
 	ZMQ_PORT (qcg.pilotjob.config.Config attribute)

 	ZMQ_PORT_MAX_RANGE (qcg.pilotjob.config.Config attribute)

 	ZMQ_PORT_MIN_RANGE (qcg.pilotjob.config.Config attribute)

 	ZMQ_PUB_ADDRESS (qcg.pilotjob.config.Config attribute)

 	ZMQ_PUB_PORT (qcg.pilotjob.config.Config attribute)

 	ZMQInterface (class in qcg.pilotjob.zmqinterface)

Partial nodes allocations

When running OMP applications on partial nodes allocations, the parameters map_cpu and mask_cpu of --cpu-bind
parameter is ignored:

srun -n 1 --cpus-per-task 2 --cpu-bind=verbose,mask_cpu:0x3 omp_app

Will not bind the single executing process of omp_app to the first two cores in the node, but instead bind the
process to all allocated cores on node. When used threads parameter:

srun -n 1 --cpus-per-task 2 --cpu-bind=verbose,threads omp_app

Slurm will bind the process to the first two cores of the allocation, in such case we have no decision about which
cores will be selected.

When allocation contains entire node, the mask_cpu and map_cpu parameters are properly interpreted by Slurm.

qcg

	qcg.pilotjob namespace
	Subpackages
	qcg.pilotjob.api package
	Submodules

	qcg.pilotjob.cmds package
	Submodules

	qcg.pilotjob.executor_api package
	Subpackages

	Submodules

	qcg.pilotjob.launcher package
	Submodules

	qcg.pilotjob.tests package
	Submodules

	qcg.pilotjob.utils package
	Submodules

	Submodules
	qcg.pilotjob.allocation module

	qcg.pilotjob.client_cmd module

	qcg.pilotjob.command_line module

	qcg.pilotjob.config module

	qcg.pilotjob.environment module

	qcg.pilotjob.errors module

	qcg.pilotjob.executionjob module

	qcg.pilotjob.executionschema module

	qcg.pilotjob.executor module

	qcg.pilotjob.fileinterface module

	qcg.pilotjob.iterscheduler module

	qcg.pilotjob.joblist module

	qcg.pilotjob.localres module

	qcg.pilotjob.logger module

	qcg.pilotjob.manager module

	qcg.pilotjob.parseres module

	qcg.pilotjob.partitions module

	qcg.pilotjob.profile module

	qcg.pilotjob.publisher module

	qcg.pilotjob.receiver module

	qcg.pilotjob.reports module

	qcg.pilotjob.request module

	qcg.pilotjob.resources module

	qcg.pilotjob.response module

	qcg.pilotjob.resume module

	qcg.pilotjob.scheduler module

	qcg.pilotjob.scheduleralgo module

	qcg.pilotjob.service module

	qcg.pilotjob.slurmres module

	qcg.pilotjob.zmqinterface module

qcg.pilotjob.allocation module

	
class qcg.pilotjob.allocation.CRAllocation(crtype, count)

	Bases: object

Allocation of consumable resources

	
crtype

	type of CR

	Type

	CRType

	
count

	amount of allocated CR

	Type

	int

	
class qcg.pilotjob.allocation.CRBindAllocation(crtype, instances)

	Bases: object

Allocation of bindable consumable resources

	
crtype

	type of CR

	Type

	CRType

	
instances

	instances of allocated CR

	Type

	list()

	
count

	number of instances of allocated CR

	Type

	int

	
class qcg.pilotjob.allocation.NodeAllocation(node, cores, crs)

	Bases: object

Resource allocation on a single node, contains information about a node,
along with the allocated cores and consumable resources.

	
_node

	a node definition

	Type

	Node

	
_cores

	allocated cores

	Type

	list(str)

	
_crs

	allocated crs

	Type

	dict(CRType,CRAllocation|CRBindAllocation)

	
release()

	Release resources allocated in this node allocation.

	
cores

	allocated cores on a node.

	Type

	list(str)

	
ncores

	number of allocated cores on a node.

	Type

	int

	
crs

	allocated crs on a node.

	Type

	dict((CRType, CRAllocation|CRBindAllocation))

	
node

	node information.

	Type

	Node

	
class qcg.pilotjob.allocation.Allocation

	Bases: object

Resource allocation splited (possible) among many nodes.

	
_nodes

	list of a single node allocation

	Type

	NodeAllocation[]

	
_cores

	total number of cores on all nodes

	Type

	int

Initialize allocation.

	
add_node(node_allocation)

	Add a node allocation.

	Parameters

	node_allocation (NodeAllocation) – description of an allocation on a single node

	
release()

	Release allocated resources.
Release resources allocated on all nodes in allocation.

	Raises

	InvalidResourceSpec – when number of cores to release on a node is greater
than number of used cores.

	
cores

	Return total number of cores of an allocation

	Returns

	number of cores

	Return type

	int

	
nodes

	Return a list of node allocations

	Returns

	list of node allocations

	Return type

	list(NodeAllocation)

	
description()

	Return a single line description of allocation

	Returns

	a single line description of allocation

	Return type

	str

qcg.pilotjob.client_cmd module

qcg.pilotjob.cmds.processes module

qcg.pilotjob.cmds.report module

qcg.pilotjob.cmds package

Submodules

	qcg.pilotjob.cmds.processes module

	qcg.pilotjob.cmds.report module

qcg.pilotjob.command_line module

qcg.pilotjob.config module

	
class qcg.pilotjob.config.Config

	Bases: enum.Enum

Configuration description for QCG-PilotJob

	Each entry contains:

	name (str): name of the configuration entry
default (str): default value for the entry
get (lambda, optional): custom function that based on passed configuration dict return proper value

By default the ‘get’ method for this class return value in dictionary related to the selected entry. In case
where entry contains ‘get’ attribute, this method will be used to return the final configuration value.

	
EXECUTOR_WD = {'cmd_opt': '--wd', 'default': '.', 'name': 'wd'}

	

	
AUX_DIR = {'cmd_opt': None, 'default': '.qcgpjm', 'name': 'aux.dir'}

	

	
EXECUTION_NODES = {'cmd_opt': '--nodes', 'default': None, 'name': 'nodes'}

	

	
ENVIRONMENT_SCHEMA = {'cmd_opt': '--envschema', 'default': 'auto', 'name': 'envs'}

	

	
RESOURCES = {'cmd_opt': '--resources', 'default': 'auto', 'name': 'resources'}

	

	
FILE_PATH = {'cmd_opt': '--file-path', 'default': 'qcg_pm_reqs.json', 'name': 'file'}

	

	
ZMQ_IP_ADDRESS = {'cmd_opt': None, 'default': '*', 'name': 'zmq.ip'}

	

	
ZMQ_PORT = {'cmd_opt': '--net-port', 'default': None, 'name': 'zmq.port'}

	

	
ZMQ_PUB_PORT = {'cmd_opt': '--net-pub-port', 'default': None, 'name': 'zmq.pub.port'}

	

	
ZMQ_PORT_MIN_RANGE = {'cmd_opt': '--net-port-min', 'default': 2222, 'name': 'zmq.port.min'}

	

	
ZMQ_PORT_MAX_RANGE = {'cmd_opt': '--net-port-max', 'default': 9999, 'name': 'zmq.port.max'}

	

	
ZMQ_IFACE_ADDRESS = {'cmd_opt': None, 'get': <function Config.<lambda>>, 'name': 'zmq.address'}

	

	
ZMQ_PUB_ADDRESS = {'cmd_opt': None, 'get': <function Config.<lambda>>, 'name': 'zmq.pub.address'}

	

	
REPORT_FORMAT = {'cmd_opt': '--report-format', 'default': 'json', 'name': 'report.format'}

	

	
REPORT_FILE = {'cmd_opt': '--report-file', 'default': 'jobs.report', 'name': 'report.file'}

	

	
LOG_LEVEL = {'cmd_opt': '--log', 'default': 'info', 'name': 'log.level'}

	

	
SYSTEM_CORE = {'cmd_opt': '--system-core', 'default': False, 'name': 'system.core'}

	

	
ADDRESS_FILE = {'cmd_opt': None, 'default': 'address', 'name': 'address.file'}

	

	
FINAL_STATUS_FILE = {'cmd_opt': None, 'default': 'final_status.json', 'name': 'final.status.file'}

	

	
DISABLE_NL = {'cmd_opt': '--disable-nl', 'default': False, 'name': 'nl.disable'}

	

	
PROGRESS = {'cmd_opt': '--show-progress', 'default': False, 'name': 'progress'}

	

	
GOVERNOR = {'cmd_opt': '--governor', 'default': False, 'name': 'governor'}

	

	
RESUME = {'cmd_opt': '--resume', 'default': None, 'name': 'resume.path'}

	

	
PARENT_MANAGER = {'cmd_opt': '--parent', 'default': None, 'name': 'manager.parent'}

	

	
MANAGER_ID = {'cmd_opt': '--id', 'default': None, 'name': 'manager.id'}

	

	
MANAGER_TAGS = {'cmd_opt': '--tags', 'default': None, 'name': 'manager.tags'}

	

	
SLURM_PARTITION_NODES = {'cmd_opt': '--slurm-partition-nodes', 'default': None, 'name': 'slurm.nodes.partition'}

	

	
SLURM_LIMIT_NODES_RANGE_BEGIN = {'cmd_opt': '--slurm-limit-nodes-range-begin', 'default': None, 'name': 'slurm.nodes.limit.begin'}

	

	
SLURM_LIMIT_NODES_RANGE_END = {'cmd_opt': '--slurm-limit-nodes-range-end', 'default': None, 'name': 'slurm.nodes.limit.end'}

	

	
SLURM_RESOURCES_FILE = {'cmd_opt': '--slurm-resources-file', 'default': None, 'name': 'slurm.resources.file'}

	

	
ENABLE_PROC_STATS = {'cmd_opt': '--enable-proc-stats', 'default': False, 'name': 'enable.proc.stats'}

	

	
ENABLE_RT_STATS = {'cmd_opt': '--enable-rt-stats', 'default': False, 'name': 'enable.rt.stats'}

	

	
WRAPPER_RT_STATS = {'cmd_opt': '--wrapper-rt-stats', 'default': 'qcg_pj_launch_wrapper', 'name': 'wrapper.rt.stats'}

	

	
NL_INIT_TIMEOUT = {'cmd_opt': '--nl-init-timeout', 'default': 600, 'name': 'launcher.init.timeout'}

	

	
NL_READY_THRESHOLD = {'cmd_opt': '--nl-ready-threshold', 'default': 1.0, 'name': 'launcher.ready.threshold'}

	

	
DISABLE_PUBLISHER = {'cmd_opt': '--disable-pub', 'default': False, 'name': 'zmq.pub.disable'}

	

	
NL_START_METHOD = {'cmd_opt': '--nl-start-method', 'default': 'slurm', 'name': 'launcher.start.method'}

	

	
get(config)

	Return configuration entry value from dictionary

	Parameters

	config (dict(str,str)) –

qcg.pilotjob.environment module

	
class qcg.pilotjob.environment.Environment

	Bases: object

Base class for setting job’s environment variables.

	
NAME

	name of environment class

	Type

	str

All parent classes must implement update_env method.

	
NAME = 'abstract'

	

	
update_env(job, env, opts=None)

	Update job environment.

	Parameters

	
	job (ExecutionJob) – job data

	env (dict(str,str)) – environment to update

	opts (dict(str,str), optional) – optional preferences for generating environment

	
class qcg.pilotjob.environment.CommonEnvironment

	Bases: qcg.pilotjob.environment.Environment

The common environment for all execution schemas.

	
NAME = 'common'

	

	
update_env(job, env, opts=None)

	Update job environment.

	Parameters

	
	job (ExecutionJob) – job data

	env (dict(str,str)) – environment to update

	opts (dict(str,str), optional) – optional preferences for generating environment

	
class qcg.pilotjob.environment.SlurmEnvironment

	Bases: qcg.pilotjob.environment.Environment

The environment compatible with Slurm execution environments.

	
NAME = 'slurm'

	

	
update_env(job, env, opts=None)

	Update job environment.

	Parameters

	
	job (ExecutionJob) – job data

	env (dict(str,str)) – environment to update

	opts (dict(str,str), optional) – optional preferences for generating environment

	
qcg.pilotjob.environment.get_environment(env_name)

	Return job execution environment based on the name.

	Parameters

	env_name (str) – environment name

	Returns

	the environment with selected name

	Return type

	Environment

	Raises

	ValueError – if environment with given name is not available

qcg.pilotjob.errors module

	
exception qcg.pilotjob.errors.AppSchedulerError

	Bases: Exception

	
exception qcg.pilotjob.errors.SlurmEnvError

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.InvalidArgument

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.InvalidAllocation

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.InvalidResourceSpec

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.NotSufficientResources

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.JobAlreadyExist

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.IllegalResourceRequirements

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.IllegalJobDescription

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.InternalError

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.JobFileNotExist

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.InvalidRequest

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.GovernorConnectionError

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.ResumeError

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.UnknownEventTopic

	Bases: qcg.pilotjob.errors.AppSchedulerError

	
exception qcg.pilotjob.errors.WrongEventFormat

	Bases: qcg.pilotjob.errors.AppSchedulerError

qcg.pilotjob.executionjob module

qcg.pilotjob.executionschema module

	
class qcg.pilotjob.executionschema.ExecutionSchema(resources, config)

	Bases: object

Method of executing job.
Currently two methods are supported:

SlurmExecuition - jobs are run via ‘srun’ command
DirectExecution - jobs are run as a normal processes

	
resources

	available resources and their origin

	Type

	Resources

	
config

	QCG-PilotJob configuration

	Type

	dict

Initialize instance.

	Parameters

	
	resources (Resources) – available resources

	config (dict) – QCG-PilotJob configuration

	
classmethod get_schema(resources, config)

	Create and return suitable instance of execution schema.

Currently decision about type of execution schema is taken based on origin of resources - if QCG-PilotJob
manager is run inside Slurm allocation, the SlurmExecution is selected. In other cases the DirectExecution
schema is instantiated.

	Parameters

	
	resources (Resources) – available resources

	config (dict) – QCG-PilotJob configuration

	Returns

	instance of execution schema

	Return type

	ExecutionSchema

	
preprocess(ex_job)

	Preprocess job iteration description before launching.
This method might be implemented in child classes.

	Args

	ex_job (ExecutionJob): execution job iteration data

	
get_env_opts()

	Return options for environment instances.
This method might be implemented in child classes

	
class qcg.pilotjob.executionschema.SlurmExecution(resources, config)

	Bases: qcg.pilotjob.executionschema.ExecutionSchema

The Slurm execution schema.
The jobs are launched with srun command.

Initialize instance.

	Parameters

	
	resources (Resources) – available resources

	config (dict) – QCG-PilotJob configuration

	
EXEC_NAME = 'slurm'

	

	
JOB_MODELS = {'default': '_preprocess_default', 'intelmpi': '_preprocess_intelmpi', 'openmpi': '_preprocess_openmpi', 'srunmpi': '_preprocess_srunmpi', 'threads': '_preprocess_threads'}

	

	
preprocess(ex_job)

	“Preprocess job iteration description before launching.
Prepare job iteration execution arguments.

	Args

	ex_job (ExecutionJob): execution job iteration data

	
get_env_opts()

	Return options for environment instances.

Set environments to not create ‘hostfile’

	
class qcg.pilotjob.executionschema.DirectExecution(resources, config)

	Bases: qcg.pilotjob.executionschema.ExecutionSchema

Directly execute job iteration without any proxy commands.

Initialize instance.

	Parameters

	
	resources (Resources) – available resources

	config (dict) – QCG-PilotJob configuration

	
EXEC_NAME = 'direct'

	

	
preprocess(ex_job)

	“Preprocess job iteration description before launching.
Prepare job iteration execution arguments.

	Args

	ex_job (ExecutionJob): execution job iteration data

	
get_env_opts()

	Return options for environment instances.

Set environments to not create ‘hostfile’

qcg.pilotjob.executor module

qcg.pilotjob.fileinterface module

	
class qcg.pilotjob.fileinterface.FileInterface

	Bases: object

Interface for reading requests from file.

	
cnt

	number of received requests so far

	Type

	int

	
path

	path to the file from whom requests will be read

	Type

	str

	
classmethod name()

	Return interface’ name.

	Returns

	name of the interface

	Return type

	str

	
setup(conf)

	Setup interface.

Open file and read all requests in JSON format. The loaded requests are returned in receive method.

	Parameters

	conf – the QCG-PilotJob configuration

	Raises

	
	JobFileNotExists – when file doens’t exist

	IllegalJobDescription – when file doesn’t contain the JSON format or the file doesn’t contain the list.

	
close()

	Close interface.

	
receive()

	Return next request.

This method contains the artificial sleep, to get chance of other events in QCG-PilotJob to process. There could
be a chance, that no job has been processed until all requests from file has been read.

Returns: the next request or None if no more request is available.

	
reply(reply_msg)

	Reply response to the other part of this interface.

	Parameters

	reply_msg (str) – message to sent as reply

Because file interface is used in batch mode, the response is ignored.

qcg.pilotjob.iterscheduler module

The definition of iteration resources schedulers.

The role of iteration resources scheduler is to based on single iteration resource requirements described as a minimum
number of resources and number of available resources in allocation, assign exact number of resources in order to
optimize resources usage. Therefore the job’s resource requirements do not have to be changed for different allocations.
The resource requirements can apply to both: number of cores and number of nodes specifications.

	
class qcg.pilotjob.iterscheduler.IterScheduler

	Bases: object

Iteration resources schedulers utility class.

	
classmethod get_scheduler(name)

	Return scheduler with given name.

	Parameters

	name (str) – scheduler name

	Returns

	
	scheduler instance with given name, or if no such scheduler is available the default implementation

	(DefaultScheduler)

	
static get_exact_iter_plan(iter_plan, exact)

	Replace range style resource requirements with the exact one.

Remove max, min, scheduler from the resource requirements and place as exact value the given value

	Parameters

	
	iter_plan (joblist.ResourceSize) – the instance of resource requirements to modify

	exact (int) – the exact value for resource requirements

	Returns

	the cloned and modified version of resource requirements

	
class qcg.pilotjob.iterscheduler.MaximumIters(job_resources, iterations, avail_resources, **params)

	Bases: object

The iteration resource scheduler for maximizing resource usage.

The maximum-iters iteration resource scheduler is trying to launch as many iterations in the same time on all
available resources. In case where number of iterations exceeds the number of available resources, the
‘maximum-iters’ schedulers splits iterations into ‘steps’ minimizing this number, and allocates as many resources
as possible for each iteration inside ‘step’.

Create maximum-iters iteration resource scheduler instance.

	Parameters

	
	job_resources (joblist.ResourceSize) – job’s resource requirements

	iterations (int) – number of iterations

	avail_resources (int) – number of available resources

	params (dict) – additional scheduler parameters

	
SCHED_NAME = 'maximum-iters'

	

	
generate()

	Generate exact job’s resource requirements for next iteration.

	Yields

	exact resource requirements for following iterations

	Raises

	InvalidRequest – when parameter max is used in resource description

	
class qcg.pilotjob.iterscheduler.SplitInto(job_resources, iterations, avail_resources, **params)

	Bases: object

The iteration resource scheduler for partitioning available resources.

This simple iteration resource scheduler splits all available resources in given partitions, and each iteration
will be executed inside whole single partition.

Create split-into iteration resource scheduler instance.

The number of partitions is taken as value of parts key of params dictionary if exists, and number of
iterations in other case.

	Parameters

	
	job_resources (joblist.ResourceSize) – job’s resource requirements

	iterations (int) – number of iterations

	avail_resources (int) – number of available resources

	params (dict) – additional scheduler parameters

	
SCHED_NAME = 'split-into'

	

	
generate()

	Generate exact job’s resource requirements for next iteration.

	Yields

	exact resource requirements for following iterations

	Raises

	InvalidRequest – when parameter max is used in resource description

	
qcg.pilotjob.iterscheduler.DefaultScheduler

	alias of qcg.pilotjob.iterscheduler.MaximumIters

qcg.pilotjob.joblist module

	
class qcg.pilotjob.joblist.JobState

	Bases: enum.Enum

The job state.

	
QUEUED = 1

	

	
SCHEDULED = 2

	

	
EXECUTING = 3

	

	
SUCCEED = 4

	

	
FAILED = 5

	

	
CANCELED = 6

	

	
OMITTED = 7

	

	
is_finished()

	Check if job state is finished (final).

	
stats(stats)

	

	
class qcg.pilotjob.joblist.JobExecution(exec=None, args=None, env=None, script=None, stdin=None, stdout=None, stderr=None, modules=None, venv=None, wd=None, model=None, model_opts=None)

	Bases: object

The execution element of job description.

	
exec

	path to the executable

	Type

	str, optional

	
args

	list of arguments

	Type

	list(str), optional

	
env

	list of environment variables

	Type

	dict(str, str), optional

	
stdin

	path to the standard input file

	Type

	str, optional

	
stdout

	path to the standard output file

	Type

	str, optional

	
stderr

	path to the standard error file

	Type

	str, optional

	
modules

	list of modules to load before job start

	Type

	list(str), optional

	
venv

	path to the virtual environment to initialize before job start

	Type

	str, optional

	
wd

	path to the job’s working directory

	Type

	str, optional

	
model

	model of execution

	Type

	str, optional

	
model_opts

	model options

	Type

	str, optional

Initialize execution element of job description.

	Parameters

	
	exec (str, optional) – path to the executable

	args (list(str), optional) – list of arguments

	env (dict(str, str), optional) – list of environment variables

	stdin (str, optional) – path to the standard input file

	stdout (str, optional) – path to the standard output file

	stderr (str, optional) – path to the standard error file

	modules (list(str), optional) – list of modules to load before job start

	venv (str, optional) – path to the virtual environment to initialize before job start

	wd (str, optional) – path to the job’s working directory

	model (str, optional) – model of execution

	model_opts (dict(str, str), optional) – model options

	Raises

	IllegalJobDescription – when:
* nor exec or script are defined,
* script and one of exec, args or env is both defined
* args is not a list
* env is not a dictionary

	
to_dict()

	Serialize execution element to dictionary.

	Returns

	dictionary with execution element values

	Return type

	dict(str)

	
to_json()

	Serialize execution element to JSON description.

	Returns

	JSON description of execution element.

	
class qcg.pilotjob.joblist.ResourceSize(exact=None, min=None, max=None, scheduler=None)

	Bases: object

The resources size element used in job description when specified the number of required cores or nodes.

Initialize resource size.

	Parameters

	
	exact (int, optional) – exact number of resources

	min (int, optional) – minimum number of resources

	max (int, optional) – maximum number of resources

	scheduler (dict, optional) – the iteration resources scheduler, the name and params (optional) keys

	Raises

	IllegalResourceRequirements raised when – * exact number and one of min, max or scheduler is both specified
* nor exact or min or max is not specified
* max and min is specified and min > max

	
exact

	exact number of resources.

	Type

	int

	
min

	minimum number of resources

	Type

	int

	
max

	maximum number of resources

	Type

	int

	
scheduler

	iteration resource scheduler name

	Type

	str

	
range

	tuple with resources range

	Type

	(int, int)

	
is_exact()

	Check if resource size is defined as exact number.

	Returns

	if resource size is defined as exact number
False: if reosurce size is defined as range

	Return type

	True

	
to_dict()

	Serialize resource size to dictionary

	Returns

	dictionary with resource size

	Return type

	dict(str)

	
to_json()

	Serialize resource size to JSON description.

	Returns

	JSON description of resource size element.

	
class qcg.pilotjob.joblist.JobResources(numCores=None, numNodes=None, wt=None, nodeCrs=None)

	Bases: object

The `resources` element of job description.

Initialize resources element of job description.

	
	if numNodes > 1, then numCores relates to each of the node, so total number of

	required cores will be a product of numNodes and numCores

	nodeCrs relates to each node available consumable resources

	Parameters

	
	- number of cores, either as exact number or as a range (numCores) –

	- number of nodes, either as exact number of as a range (numNodes) –

	- wall time (wt) –

	nodeCrs (dict(string,int)) –

	Raises

	IlleglResourceRequirements – raised when:
* numCores and numNodes not defined
* numCores or numNodes not instance of either int, dict or ResourceSize
* wrong consumable resources definition

	
has_nodes

	true if resources element of job description contains number of nodes definition

	Type

	bool

	
has_cores

	true if resources element of job description contains number of cores definition

	Type

	bool

	
has_crs

	true if resources element of job description contains consumable resources definition

	Type

	bool

	
cores

	return numCores definition of resources element.

	Type

	ResourceSize

	
nodes

	return numNodes definition of resources element.

	Type

	ResourceSize

	
crs

	return nodeCrs definition of resources element.

	Type

	ResourceSize

	
get_min_num_cores()

	Return minimum number of cores the job can be run.

	Returns

	minimum number of required cores for the job.

	Return type

	int

	
to_dict()

	Serialize resource element of job description to dictionary

	Returns

	dictionary with resources element of job description

	Return type

	dict(str)

	
to_json()

	Serialize resource element of job description to JSON description.

	Returns

	JSON description of resource element of job description.

	
class qcg.pilotjob.joblist.JobDependencies(after=None)

	Bases: object

Runtime dependencies of job.

Initialize runtime dependencies of a job.

	Parameters

	- list of jobs that must finish before job can be started (after) –

	Raises

	IllegalJobDescription – when list of jobs has a wrong format.

	
has_dependencies

	true if job contains runtime dependencies

	Type

	bool

	
to_dict()

	Serialize job’s runtime dependencies

	Returns

	dictionary with job’s runtime dependencies

	Return type

	dict(str)

	
to_json()

	Serialize job’s runtime dependencies to JSON description.

	Returns

	JSON description of job’s runtime dependencies

	
class qcg.pilotjob.joblist.JobIteration(start=None, stop=None, values=None)

	Bases: object

The iteration element of job description.

Initialize iteration element of job description.

The iteration can be defined as a range with start` and `stop parameters, or as an values set.
If start is not defined but stop is, the value 0 is assumed as a start.

	Parameters

	
	start (int) – starting index of an iteration

	stop (int) – stop index of an iteration - the last value of job’s iteration will be stop - 1

	values (list(str)) – the enumerated list of iteration values

	Raises

	IllegalJobDescription – raised when:
* stop and values is not defined
* stop and values is both defined
* start is greater or equal stop

	
in_range(index)

	Check if given index is in range of job’s iterations.

	Parameters

	index (int) – index to check

	Returns

	true if index is in range

	Return type

	bool

	
iterations_gen()

	Iterations generator.

	Returns

	the iteration indexes

	Return type

	int

	
iterations()

	Return number of iterations of a job.

	Returns

	number of iterations

	Return type

	int

	
iteration_value(index)

	Return value related with the iteration index.

	Returns

	
	if iteration has been defined with values argument the value on position according to the iteration

	index will be returned, oterwise the string representation of index will be returned

	Return type

	str

	
to_dict()

	Serialize iteration element of job description

	Returns

	dictionary with iteration element of job description

	Return type

	dict(str)

	
to_json()

	Serialize iteration element of job description to JSON description.

	Returns

	JSON description of iteration element of job description

	
class qcg.pilotjob.joblist.SubJobState

	Bases: object

Represent state of execution of single job’s iteration.

Initialize state of execution of single job’s iteration.

The initial state is set to QUEUED and all other attributes are initialized as empty elements.

	
state()

	Return current status of job’s iteration.

	Returns

	current status of job’s iteration

	Return type

	JobState

	
set_state(state, err_msg=None)

	Set current state of job’s iteration.

	Parameters

	
	state (JobState) – the new state of job’s iteration

	err_msg (str, optional) – the error message to record

	
append_runtime(data)

	Record job’s iteration runtime statistics.

	Parameters

	data (dict) – the data to append to job’s iteration runtime statistics

	
history()

	Return job’s iteration state change history.

	Returns

	job’s iteration state change history.

	Return type

	list(JobState, DateTime)

	
messages()

	Return job’s iteration recorded error messages.

	Returns

	recorded job’s iteration error messages.

	Return type

	list(str)

	
runtime()

	Return job’s iteration runtime statistics.

	Returns

	job’s iteration runtime statistics

	Return type

	dict

	
append_message(msg)

	Record job’s iteration error message.

	Parameters

	msg (str) – error message to record

	
class qcg.pilotjob.joblist.Job(name, execution, resources, iteration=None, dependencies=None, attributes=None)

	Bases: object

Job description and state.

	
_name

	job name

	Type

	str

	
_execution

	execution description

	Type

	JobExecution

	
_resources

	resources description

	Type

	JobResources

	
_iteration

	iteration description

	Type

	JobIteration

	
dependencies

	runtime dependencies description

	Type

	JobDependencies

	
attributes

	additional attributes

	Type

	dict

	
_subjobs

	list of job’s iteration states - only if iteration element defined, elements
at positions ‘job iteration’ - ‘iteration start’

	Type

	list(SubJobState)

	
_subjobs_not_finished

	number of not finished already iterations - only if iteration element defined

	Type

	int

	
_subjobs_failed

	number of already failed iterations - only if iteration element defined

	Type

	int

	
_history

	state change history

	Type

	list(JobState, DateTime)

	
_state

	current state

	Type

	JobState

	
_messages

	recorded error messages

	
_runtime

	runtime information

	Type

	dict

	
_queue_pos

	current job’s position in scheduling queue

Initialize job.

	Parameters

	
	name (str) – job name

	execution (JobExecution or dict) – execution element of job’s description

	resources (JobResources or dict) – resources element of job’s description

	iteration (JobIteration or dict, optional) – iteration element of job’s description

	dependencies (JobDependencies or dict, optional) – dependencies element of job’s description

	attributes (dict, optional) – additional job’s attributes used by partition manager

	Raises

	IllegalJobDescription – raised in case of wrong elements of job’s description

	
static validate_jobname(jobname)

	Check if given name is valid for job’s name.

	Parameters

	jobname (str) – name to validate

	Returns

	true if name is valid

	Return type

	bool

	
name

	job’s name

	Type

	str

	
get_name(iteration=None)

	Return job’s or job’s iteration name.

	Parameters

	iteration (int, optional) – if defined the iteration’s name is returned

	Returns

	job’s or job’s iteration’s name

	Return type

	str

	
execution

	the execution element of job description

	Type

	JobExecution

	
resources

	the resources element of job description

	Type

	JobExecution

	
get_not_finished_iterations()

	Return number of currently not finished iterations.

This method is valid only for iteration jobs.

	Returns

	number of not finished iterations

	Return type

	int

	
get_failed_iterations()

	Return number of already failed iterations.

This method is valid only for iteration jobs.

	Returns

	number of failed iterations

	Return type

	int

	
history(iteration=None)

	Return job’s or job’s iteration state change history.

	Parameters

	iteration (int, optional) – if defined the iteration’s state change history is returned

	Returns

	job’s or job’s iteration state change history.

	Return type

	list(JobState, DateTime)

	
messages(iteration=None)

	Return job’s or job’s iteration recorded error messages.

	Parameters

	iteration (int, optional) – if defined the iteration’s recorded error messages is returned

	Returns

	recorded job’s or job’s iteration error messages.

	Return type

	list(str)

	
runtime(iteration=None)

	Return job’s or job’s iteration runtime statistics.

	Parameters

	iteration (int, optional) – if defined the iteration’s runtime statistics is returned

	Returns

	job’s or job’s iteration runtime statistics

	Return type

	dict

	
has_iterations

	true if job has iterations

	Type

	bool

	
iteration

	iteration element of job description

	Type

	JobIteration

	
state(iteration=None)

	Return job’s or job’s iteration current state.

	Parameters

	iteration (int, optional) – if defined the iteration’s state is returned

	Returns

	job’s or job’s iteration current state

	Return type

	JobState

	
str_state(iteration=None)

	Return job’s or job’s iteration current state as string.

	Parameters

	iteration (int, optional) – if defined the iteration’s state is returned

	Returns

	job’s or job’s iteration current state as string

	Return type

	JobState

	
iteration_states

	list of iteration states

	Type

	list(SubJobState)

	
set_state(state, iteration=None, err_msg=None)

	Set current job’s or job’s iteration state.

	Parameters

	
	state (JobState) – new job’s or job’s iteration state

	iteration (int, optional) – job’s iteration index if the iteration state should be set

	err_msg (str, optional) – the optional error message to record

	Returns

	
	the job’s finish state if job’s iteration status change triggered job status change (for example

	the last iteration job finished, so the whole job also finished), or None if job’s as a whole still
not finished

	Return type

	JobState

	
has_dependencies

	true if job has runtime dependencies

	Type

	bool

	
append_message(msg)

	Record job’s error message.

	Parameters

	msg (str) – error message to record

	
queue_pos()

	Return current position of a job in scheduling queue

	Returns

	current position of a job in scheduling queue

	Return type

	int

	
set_queue_pos(pos)

	Set current position of a job in scheduling queue.

	Parameters

	pos (int) – current position of a job in scheduling queue

	
clear_queue_pos()

	Reset current position of a job in scheduling queue.

	
append_runtime(data, iteration)

	Record job’s or job’s iteration runtime statistics.

	Parameters

	
	data (dict) – the data to append to job’s or job’s iteration runtime statistics

	iteration (int, optional) – if defined the iteration’s runtime statistics will be updated

	data – the data to append to job’s or job’s iteration runtime statistics

	
to_dict()

	Serialize job’s description to dictionary.

	Returns

	dictionary with job description

	Return type

	dict(str)

	
to_json()

	Serialize job description to JSON format.

	Returns

	JSON of job’s description

	
class qcg.pilotjob.joblist.JobList

	Bases: object

The list of all submited jobs.

	
_jmap

	dictionary with all submited jobs with name as key

	Type

	dict(str,Job)

Initialize the list.

	
static parse_jobname(jobname)

	Split given name into job name and iteration.

	Parameters

	jobname (str) – the name to parse

	Returns

	
	tuple with job name and iteration, if given job name didn’t contain iteration index, the

	second value will be None

	Return type

	name, iteration

	
add(job)

	Add a new job.

	Parameters

	job (Job) – job to add to the list

	Raises

	JobAlreadyExist – when job with given name already exists in list

	
exist(jobname)

	Check if job with given name is in list.

	Parameters

	jobname (str) – job name to check

	Returns

	true if job with given name is already in list

	Return type

	bool

	
get(jobname)

	Return job with given name.

	Parameters

	jobname (str) – job name

	Returns

	job from the list or None if not such job has been added.

	Return type

	Job

	
jobs()

	Return all job names in the list.

	Returns

	set-like object with job names

	
remove(jobname)

	Remove job with given name from list.

	Parameters

	jobname (str) – job’s name to remove from list

qcg.pilotjob.launcher.agent module

qcg.pilotjob.launcher.launcher module

	
class qcg.pilotjob.launcher.launcher.Launcher(config, wdir, aux_dir, manager)

	Bases: object

The launcher service used to launch applications on remote nodes.

All nodes should have shared file system.

	
work_dir

	path to the working directory

	Type

	str

	
aux_dir

	path to the auxilary directory

	Type

	str

	
zmq_ctx

	ZMQ context

	Type

	zmq.Context

	
agents

	= requested agent instances

	Type

	dict

	
nodes

	registered agent instances

	Type

	dict

	
jobs_def_cb

	application finish default callback

	Type

	def

	
jobs_cb

	application finish callbacks

	Type

	dict

	
node_local_agent_cmd

	list of command arguments to start agent on local node

	Type

	list

	
node_ssh_agent_cmd

	list of command arguments to start agent on remote node via ssh

	Type

	str

	
in_socket

	
	Type

	zmq.Socket

	
local_address

	
	Type

	str

	
local_export_address

	
	Type

	str

	
iface_task

	
	Type

	asyncio.Future

Initialize instance.

	Parameters

	
	config (dict) – configuration dictionary

	wdir (str) – path to the working directory (the same on all nodes)

	aux_dir (str) – path to the auxilary directory (the same on all nodes)

	manager (Manager) – manager used to call scheduler loop on certain events

	
MIN_PORT_RANGE = 10000

	

	
MAX_PORT_RANGE = 40000

	

	
START_TIMEOUT_SECS = 600

	

	
SHUTDOWN_TIMEOUT_SECS = 30

	

	
MAXIMUM_CONCURRENT_CONNECTIONS = 1000

	

	
set_job_finish_callback(jobs_finish_cb, *jobs_finish_cb_args)

	Set default function for notifing about finished jobs.

	Parameters

	
	- optional default job finish callback (jobs_finish_cb) –

	- job finish callback parameters (jobs_finish_cb_args) –

	
cancel(agent_id, app_id)

	Cancel sumited application by the selected agent.

	Parameters

	
	- agent that launched applicaton (agent_id) –

	- application identifier (app_id) –

	
start(instances, local_port=None)

	Initialize launcher with given agent instances.
The instances data must contain list of places along with the data needed to
initialize instance services.

	Parameters

	
	instances ({} []) – agent_id - the agent identifier
ssh - if the instance should be run via ssh (account?,host?,remote_python?)
slurm - if the instance should be run via slurm ()
local - if the instance should be run on a local machine

	- optional local port for the incoming connections, if not defined, (local_port) – the available random port will be chosen from the range

	
stop()

	Stop all agents and release resources.

	
submit(agent_id, app_id, jname, args, stdin=None, stdout=None, stderr=None, env=None, wdir=None, cores=None, finish_cb=None, finish_cb_args=None)

	Submit application to be launched by the selected agent.

	Parameters

	
	- agent that should launch applicaton (agent_id) –

	- application identifier (app_id) –

	- job name (jname) –

	- aplication arguments (args) –

	- path to the standard input file (stdin) –

	- path to the standard output file (stdout) –

	- path to the standard error file (stderr) –

	- environment variables (env) –

	- working directory (wdir) –

	- the list of cores application should be binded to (cores) –

	- job finish callback (finish_cb) –

	- job finish callback arguments (finish_cb_args) –

	
qcg.pilotjob.launcher.launcher.run_job(launcher, agent_id, appid, args, stdin=None, stdout=None, stderr=None, env=None)

	Just for testing.

	
qcg.pilotjob.launcher.launcher.test()

	Some simple test

	
qcg.pilotjob.launcher.launcher.finish_callback_default(text, message)

	Just for testing.

	
qcg.pilotjob.launcher.launcher.finish_callback(text, jobid, message)

	Just for testing.

qcg.pilotjob.launcher.procstats module

qcg.pilotjob.launcher.rtstats module

	
class qcg.pilotjob.launcher.rtstats.RunTimeStats(pipe_path)

	Bases: object

The run-time statistics of launched processes.
With use of wrapper application, this class will register the start and finish moments of launched application
(w/o delays and overheads provided by the asyncio and QCG-PilotJob workload).
The mechanism of gathering runtime statistics is following:

	the unix named pipe is used to communicate with wrappers (single pipe globally for all processes)

	the path to the pipe is passed to the wrapper where the start & stop moment should be written

	in the mean time, this class reads the pipe for any statistics and gathers them

To stop gathering the metrics, the line with FINISH string should be placed in the pipe.

	
pipe_path

	
	Type

	str

	
rt_stats

	
	Type

	dict(str, dict())

	
gather()

	Read the pipe for any metrics until FINISH string appear.

qcg.pilotjob.launcher package

Submodules

	qcg.pilotjob.launcher.agent module

	qcg.pilotjob.launcher.launcher module

	qcg.pilotjob.launcher.procstats module

	qcg.pilotjob.launcher.rtstats module

qcg.pilotjob.localres module

	
qcg.pilotjob.localres.parse_local_resources(config)

	Parse resources passed in configuration.

The user can specify in configuration “virtual” resources such as number of nodes and cores.

	Parameters

	config (dict) – QCG-PilotJob configuration

	Returns

	available resources

	Return type

	Resources

	Raises

	ValueError – in case of missing node configuration or wrong number of cores configuration

qcg.pilotjob.logger module

qcg.pilotjob.manager module

qcg.pilotjob.parseres module

	
qcg.pilotjob.parseres.parse_resources_file(config)

	

	
qcg.pilotjob.parseres.get_resources(config)

	Return available resources according to environment.

Function returns available resources according to specified information source. The user may specify in
configuration (resources configuration parameter) the information source. This parameter can take values:

	auto (default one) - automatically detect the source of information

	
	local - detect information about number of nodes and cores from configuration parameters, and if they are not

	defined, detect local system number of cores (no remote nodes will be available)

	slurm - detect Slurm allocation resources

	Automatic detection of source of information checks (in following order):

	
	QCG-PilotJob parameters for resource definition

	Slurm allocation environment

	information about local system cores

	Parameters

	config (dict) – QCG-PilotJob configuration

	Returns

	available resources information

	Return type

	Resources

	Raises

	ValueError – for unknown value of resources configuration parameter value

qcg.pilotjob.partitions module

qcg.pilotjob.profile module

	
qcg.pilotjob.profile.profile_dummy(x)

	

qcg.pilotjob.publisher module

	
class qcg.pilotjob.publisher.EventTopic

	Bases: enum.Enum

Published event types.

	
ITERATION_STATUS = 'IST'

	

	
ITERATION_FINISHED = 'IFI'

	

	
JOB_STATUS = 'JST'

	

	
JOB_FINISHED = 'JFI'

	

	
NO_JOBS = 'NOJ'

	

	
class qcg.pilotjob.publisher.StatusPublisher

	Bases: object

Publish job status change notifications.

Publisher handles notifications with queing events to publish. The queing event is done synchronously.
In the background the sender task takes queued events and sent them (asynchronously).

	
zmq_ctx

	ZMQ context

	Type

	Context

	
socket

	ZMQ PUB socket

	Type

	socket

	
address

	address of ZMQ PUB interface from configuration

	Type

	str

	
local_port

	listen port number

	Type

	int

	
external_address

	address on external network interface (not on private ips)

	Type

	str

Initialize Publisher.

	
setup(conf)

	Create Publisher interface.

If port number is not specified in QCG-PilotJob configuration, it is chosen randomly from configured range.

	
static encode_published_data(topic, data)

	Encode event data to be sent with send_string socket method.

	Parameters

	
	(EventTopic) (topic) – the event topic

	(obj) (data) – data to sent

	Returns

	encoded event with topic as string

	
static decode_published_data(event_message)

	Decode received event.

	Parameters

	event_message – the received message

	Returns

	tupple (EventTopic, object) with event topic and deserialized data

	Raise

	UnknownEventTopic - when received topic is not known
WrongEventFormat - when event data cannot be deserialized

	
publish(topic, data)

	Publish event

	Parameters

	
	(EventTopic) (topic) – event’s topic

	(obj) (data) – event data

	
stop()

	Cleanup.

qcg.pilotjob.receiver module

	
class qcg.pilotjob.receiver.ResponseStatus

	Bases: enum.Enum

Request response status.

	
UNKNOWN = 1

	

	
ERROR = 2

	

	
SUCCESS = 3

	

	
class qcg.pilotjob.receiver.ValidateResponse

	Bases: object

The response data.

	
result

	status

	Type

	ResponseStatus

	
msg

	response message

	Type

	str

	
request

	request

	Type

	Request

Initialize response.

	
error(err_msg)

	Set response as an error.

	Parameters

	err_msg (str) – response error message

	
success(request)

	Set response as a success.

	Parameters

	request (Request) – the original request

	
is_error

	is an error response

	Type

	bool

	
is_success

	is a success response

	Type

	bool

	
class qcg.pilotjob.receiver.Receiver(handler, ifaces)

	Bases: object

The receiver listens for requests on input interfaces and passes requests to handlers (managers).

	
_ifaces

	list of interfaces to listen for requests

	Type

	list(Interface)

	
_tasks

	list of tasks that listens on interfaces for incoming requests

	Type

	list(asyncio.Future)

	
_zmq_address

	address of the ZMQ input interface

	Type

	str

	
_handler

	object which handles incoming requests

	Type

	Manager

	
_handlers

	map of requests and handler functions

	Type

	dict

	
finished

	flag set by the handlers when receiving should be finished

	Type

	bool

Initialize receiver.

	Parameters

	
	handler – manager that handles requests

	ifaces (Interface[]) – list of interfaces

	
zmq_address

	address of ZMQ interface

	Type

	str

	
interfaces

	list of input interfaces

	Type

	list(Interface)

	
set_finish(finished)

	Set finish flag.

If set to True the receiver should not accept any new requests and whole service should finish.
The service will monitor this flag to know when receiver finished accepting requests.

	Parameters

	finished (bool) – the finish flag

	
is_finished

	the value of finish flag

	Type

	bool

	
cancel_listeners()

	Cancel all interface listeners.

	
run()

	Start listening on interfaces.

This method creates asynchronic tasks and returns. To stop created tasks, method ‘stop’
must be called.

	
stop()

	Stop all listening on interfaces.

	
generate_status_response()

	Get current statistics from handler/manager.

	Returns

	response with current statistics as a data

	Return type

	Response

qcg.pilotjob.reports module

	
class qcg.pilotjob.reports.JobReport(report_file, buffer_size=100)

	Bases: object

Base class for report generating classes.

The report_job_entry must be overloaded by the child classes.

	
report_file

	path to the report file

	Type

	str

	
buffer

	buffer for caching reports

	Type

	io.StringIO

	
buffered_entries

	number of buffered entries

	Type

	int

	
buffer_size

	maximum number of entries in cache before they will be flushed to the report file

	Type

	int

Initialize report class.

	Parameters

	
	report_file (str) – path to the report file

	buffer_size (int) – maximum number of entries to be buffered

	
report_job(job, iteration)

	Report job statistics.

	Parameters

	
	job (Job) – job to report

	iteration (int) – job’s iteration index

	
flush()

	Output buffered entries to the file.

	
report_job_entry(job, iteration, ostream)

	The method for generating report content for given job’s iteration.

	Parameters

	
	job (Job) – job to report

	iteration (int) – job’s iteration index

	ostream (io.StringIO) – buffer to output job’s report

	
class qcg.pilotjob.reports.TextFileReport(report_file)

	Bases: qcg.pilotjob.reports.JobReport

Generate human readable job report file.

Initialize text file reporter.

	Parameters

	report_file (str) – path to the report file

	
NAME = 'text'

	

	
report_job_entry(job, iteration, ostream)

	Generate human readable entry for job’s iteration.

	Parameters

	
	job (Job) – job to report

	iteration (int) – job’s iteration index

	ostream (io.StringIO) – buffer to output job’s report

	
class qcg.pilotjob.reports.JsonFileReport(report_file)

	Bases: qcg.pilotjob.reports.JobReport

Generate easy parsable JSON job report file.

Initialize text file reporter.

	Parameters

	report_file (str) – path to the report file

	
NAME = 'json'

	

	
report_job_entry(job, iteration, ostream)

	Generate human readable entry for job’s iteration.

	Parameters

	
	job (Job) – job to report

	iteration (int) – job’s iteration index

	ostream (io.StringIO) – buffer to output job’s report

	
qcg.pilotjob.reports.none_reporter()

	Dummy class for no reporting job’s.

	
qcg.pilotjob.reports.get_reporter(format_name, report_file)

	Return reporter class based on the name.

	The currently available reporter classes are:

	‘text’ - human readable job reports
‘json’ - easy parsable JSON job reports
‘none’ - none reporting

	Parameters

	
	format_name (str) – report format name

	report_file (str) – path to the output file

	Returns

	instance of report class

	Return type

	JobReport

	Raises

	ValueError – when reporter with given name is not known

qcg.pilotjob.request module

	
class qcg.pilotjob.request.Request

	Bases: object

Base class for all requests.

	Each sub-class should have defined methods:

	to_dict() - serialize request to dictionary
to_json() - serialize request to JSON format

	and class attribute:

	REQ_NAME - name of the request

	
classmethod parse(data)

	Parse request.

	Parameters

	data (dict) – parsed data

	Returns

	request object

	Return type

	req (Request)

	Raises

	InvalidRequest – in case of wrong or unknown request

	
class qcg.pilotjob.request.ControlReq(data)

	Bases: qcg.pilotjob.request.Request

The control request.

	
command

	the control command

	Type

	str

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'control'

	

	
REQ_CONTROL_CMD_FINISHAFTERALLTASKSDONE = 'finishAfterAllTasksDone'

	

	
REQ_CONTROL_CMDS = ['finishAfterAllTasksDone']

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.RegisterReq(data)

	Bases: qcg.pilotjob.request.Request

The register request.

	
entity

	the register entity

	Type

	str

	
params

	register parameters, the required keys are id, address and resources

	Type

	dict

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'register'

	

	
REQ_REGISTER_ENTITIES = ['manager']

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.SubmitReq(data)

	Bases: qcg.pilotjob.request.Request

The submit request.

	
jobs

	the list of job descriptions

	Type

	list(dict)

Initialize request.

	Parameters

	data (dict) – request data

	Raises

	InvalidRequest – in case of wrong job description format

	
REQ_NAME = 'submit'

	

	
REQ_CNT = 1

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.JobStatusReq(data)

	Bases: qcg.pilotjob.request.Request

The job status request.

	
job_names

	the job names list to report status

	Type

	list(str)

Initialize request.

	Parameters

	data (dict) – request data

	Raises

	InvalidRequest – in case of wrong request format

	
REQ_NAME = 'jobStatus'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.JobInfoReq(data)

	Bases: qcg.pilotjob.request.Request

The job info request.

	
job_names

	the job names list to report info

	Type

	list(str)

	
include_childs

	does the job’s iteration also should be reported

	Type

	bool

Initialize request.

	Parameters

	data (dict) – request data

	Raises

	InvalidRequest – in case of wrong request format

	
REQ_NAME = 'jobInfo'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.CancelJobReq(data)

	Bases: qcg.pilotjob.request.Request

The cancel job request.

Currently not supported.

	
job_names

	job names to cancel

	Type

	list(str)

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'cancelJob'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.RemoveJobReq(data)

	Bases: qcg.pilotjob.request.Request

Remove job from system.

	
job_names

	job names to remove

	Type

	str

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'removeJob'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.ListJobsReq(data)

	Bases: qcg.pilotjob.request.Request

The list jobs request.

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'listJobs'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.ResourcesInfoReq(data)

	Bases: qcg.pilotjob.request.Request

The resources info request.

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'resourcesInfo'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.FinishReq(data)

	Bases: qcg.pilotjob.request.Request

The finish request.

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'finish'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.StatusReq(data)

	Bases: qcg.pilotjob.request.Request

The current statistics request.

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'status'

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

	
class qcg.pilotjob.request.NotifyReq(data)

	Bases: qcg.pilotjob.request.Request

The notify request.

	
entity

	the notify entity

	Type

	str

	
params

	notify parameters, the required keys are name, state and attributes

	Type

	dict

Initialize request.

	Parameters

	data (dict) – request data

	
REQ_NAME = 'notify'

	

	
NOTIFY_ENTITY = ['job']

	

	
to_dict()

	Serialize request to dictionary.

	Returns

	serialized request

	Return type

	dict

	
to_json()

	Serialize request to JSON format.

	Returns

	serialized request

	Return type

	str

qcg.pilotjob.resources module

	
class qcg.pilotjob.resources.CRType

	Bases: enum.Enum

Consumable resource type.

	
GPU = 1

	

	
MEM = 2

	

	
class qcg.pilotjob.resources.CR(crtype, total_count=0, used=0)

	Bases: object

Consumable resources.

	
crtype

	type of cr

	Type

	CRType

	
total_count

	number of cr

	Type

	int

	
used

	currently used crs

	Type

	int

Initialize consumable resources.

	Parameters

	
	crtype (CRType) – type of cr

	total_count (int) – number of crs

	used (int) – currently used crs

	
available

	number of available resources.

	Type

	int

	
allocate(count)

	Allocate consumable resources.

	Parameters

	count (int) –

	Returns

	
	number of allocated resources, or 0 if no resources has been allocated - due to

	insufficient resources.

	Return type

	CRAllocation

	
to_dict()

	Serialize consumable resources to dictionary.

	Returns

	serialized consumable resources

	Return type

	dict

	
static from_dict(data)

	Create instance of CR class based on serialized data.

	Parameters

	data (dict) – node data generated by the ‘to_dict’ method

	Returns

	instance

	Return type

	CR

	
release(cralloc)

	Release allocated consumable resources.

	Parameters

	cralloc (CRAllocation) –

	Raises

	InternalError – if allocation size is greater than used resources, no resources are released.

	
class qcg.pilotjob.resources.CRBind(crtype, ids, free_ids=None)

	Bases: object

Consumable resource with bindable instances.

The object tracks allocation of specific instances.

	
crtype

	
	Type

	CRType

	
total_count

	
	Type

	int

	
ids

	
	Type

	list(str)

	
_free

	
	Type

	list(str)

Initialize bindable consumable resources.

	Parameters

	
	crtype (CRType) –

	ids (list()) –

	free_ids (list, optional) –

	
available

	number of available resources.

	Type

	int

	
used

	number of used resources.

	Type

	int

	
allocate(count)

	Allocate bindable resources.

	Parameters

	count (int) – number of resources to allocate

	Returns

	
	object with a list of allocated bindable instances of the resources, or None if no

	resources has been allocated - due to insufficient resources.

	Return type

	CRBindAllocation

	
release(cralloc)

	Release allocated bindable consumable resources.

	Parameters

	cralloc (CRBindAllocation) – allocation to release

	Raises

	InternalError – if ‘count’ is greater than used resources, no resources are released.

	
to_dict()

	Serialize bindable consumable resources to dictionary.

	Returns

	serialized data

	Return type

	dict

	
static from_dict(data)

	Create instance of CRBind class based on serialized data.

	Parameters

	data (dict) – serialized data

	Returns

	instance

	Return type

	CRBind

	
class qcg.pilotjob.resources.Node(name=None, total_cores=0, used=0, core_ids=None, free_cores=None, crs=None)

	Bases: object

Node resources.
This class stores and allocates specific cores. Each core is identified by the number.

	
_name

	node name

	Type

	str

	
_total_cores

	total number of cores on a node

	Type

	int

	
_core_ids

	core identifiers

	Type

	list(str)

	
_free_cores

	free core identifiers

	Type

	list(str)

	
_crs

	list of available consumable resources

	Type

	dict(crType,CR|CRBind)

	
resources

	instance of resources the node belongs, set by constructor of Resources class

	Type

	Resources

	Parameters

	
	name (str) –

	total_cores (int) –

	used (int) –

	core_ids (list(str)) - optional core identifiers (the list must have at least 'total_cores' elements) –

	free_cores (list(str)) - optional free core identifiers (the list must have total_cores-used elements) –

	crs (dict(CRType,CR|CRBind)) –

	
set_available_core_ids(core_ids)

	Set a new list of available cpu/core identifiers.
There are scenarios where information obtained from Slurm is not correct, and the real core/cpu identifiers are
gathered by the agent launched from the manager.

	Parameters

	core_ids (list(int)) –

	
name

	node name

	Type

	str

	
total

	total number of cores

	Type

	int

	
used

	number of used cores

	Type

	int

	
free

	number of free cores

	Type

	int

	
free_ids

	list of free core identifiers

	Type

	list(str)

	
ids

	list of all available core identifiers

	Type

	list(str)

	
crs

	available consumable resources

	Type

	dict(crType,CR|CRBind)

	
str_crs

	string representation of available consumable resources

	Type

	str

	
available

	

	
has_enough_crs(crs)

	Check if node has enough CR.

	Parameters

	crs (dict(CRType,int)) –

	Returns

	true - if node contains requested cr’s, otherwise false.

	
allocate_crs(crs)

	Allocate requested crs.

	Parameters

	crs (dict(CRType,int)) –

	Returns

	dict(CRType,CR|CRBind) - with allocated cr’s

	Raises

	NotSufficientResources - if no all resources could be reserved, in that case no resources will be allocated.

	
allocate_max(max_cores, crs=None)

	Allocate maximum number of cores on a node and specific number of consumable resources.

	Parameters

	
	max_cores (int) –

	crs (dict(CRType,int), optional) –

	Returns

	instance with allocated resources, or None if there no any available resources

	Return type

	NodeAllocation

	
allocate_exact(cores, crs=None)

	Allocate specific number of cores on a node and specific number of consumable resources.

	Parameters

	
	cores (int) –

	crs (dict(CRType,int)) –

	Returns

	instance with allocated resources, or None if there no any available resources

	Return type

	NodeAllocation

	
release(allocation)

	Release allocation on a node.

	Parameters

	allocation (NodeAllocation) – allocated resources

	
to_dict()

	Serialize node information to dictionary.

	Returns

	serialized node informations

	Return type

	dict

	
to_json()

	Serialize node information to JSON format.

	Returns

	serialized node information

	Return type

	str

	
static from_dict(data)

	Create instance of Node class based on serialized data.

	Parameters

	data – node data generated by the ‘to_dict’ method

	Returns

	instance of Node class

	Return type

	Node

	
class qcg.pilotjob.resources.ResourcesType

	Bases: enum.Enum

Origin of resources.

	
LOCAL = 1

	

	
SLURM = 2

	

	
class qcg.pilotjob.resources.Resources(rtype, nodes=None, binding=False)

	Bases: object

Available resources set.
The set stores and tracks nodes with possible different number of available cores.

	
_type

	origin of resources

	Type

	ResourcesType

	
_binding

	does information about specific cores is available

	Type

	bool

	
_nodes

	list of available nodes

	Type

	list(Node)

	
_total_cores

	total number of available cores

	Type

	int

	
_used_cores

	currently used cores

	Type

	int

	
_max_crs

	maximum number of consumable resources on single node

	Type

	dict(CRType, int)

	
_total_crs

	total number of consumable resources

	Type

	dict(CRType, int)

	
_system_allocation

	resources allocated for system, excluded from those available for jobs

	Type

	NodeAllocation

Initialize resources.

	Parameters

	
	rtype (ResourcesType) – origin of resources

	nodes (list(Node)) – list of available nodes

	binding (bool) – does information about specific cores is available

	
rtype

	type of resources

	Type

	ResourceType

	
binding

	is cpu binding available

	Type

	bool

	
nodes

	list of all available nodes

	Type

	list(Node)

	
total_nodes

	total number of nodes

	Type

	int

	
total_cores

	total number of available cores

	Type

	int

	
used_cores

	number of used cores

	Type

	int

	
free_cores

	number of currently free cores

	Type

	int

	
max_crs

	maximum number of CRs on a single node

	Type

	dict(CRType,int)

	
total_crs

	total number of CRs on all nodes

	Type

	dict(CRType,int)

	
mark_not_available_cores(not_avail_cores)

	

	
mark_available_cores(avail_cores)

	

	
allocate_for_system()

	Allocate single core for QCG-PilotJob, excluding this core from those available for jobs.

	
node_cores_allocated(cores)

	Function called by the node when some cores has been allocated.

This function should track number of used cores in Resources statistics.

	Parameters

	cores (int) – number of allocated cores

	
node_cores_released(cores)

	Function called by the node when some cores has been released.
This function should track number of used cores in Resources statistics.

	Parameters

	cores (int) – number of released cores

	
check_min_job_requirements(job_reqs)

	Check if given resource requirements can be met with those available.

	Parameters

	job_reqs (job_reqs) – job’s resource requirements described as dictionary

	Returns

	true if job’s resources requirements are less than available

	Return type

	bool

	
to_dict()

	Serialize resources information to dictionary.

	Returns

	serialized resources information

	Return type

	dict

	
to_json()

	“Serialize resources information to JSON.

	Returns

	serialized resources information

	Return type

	str

	
static from_dict(data)

	Create instance of Resources class based on serialized data.

	Parameters

	data – resources data generated by the ‘to_dict’ method

	Returns

	instance of Resources class

	Return type

	Resources

qcg.pilotjob.response module

	
class qcg.pilotjob.response.ResponseCode

	Bases: enum.IntEnum

Response status.

	
OK = 0

	

	
ERROR = 1

	

	
class qcg.pilotjob.response.Response(code=<ResponseCode.OK: 0>, msg=None, data=None)

	Bases: object

Response data.

The response is sent back to the sender of request.

	
code

	response status

	Type

	ResponseCode

	
msg

	response message

	Type

	str

	
data

	response data

	Type

	
	

Initialize response.

	Parameters

	
	code (ResponseCode) – response status

	msg (str, optional) – message

	data – data

	
classmethod ok(msg=None, data=None)

	Create success response.

	Parameters

	
	msg (str, optional) – message

	data (*, optional) – data

	
classmethod error(msg=None, data=None)

	Create error response.

	Parameters

	
	msg (str, optional) – message

	data (*, optional) – data

	
to_dict()

	Serialize response to dictionary.

	Returns

	serialized response

	Return type

	dict

	
to_json()

	Serialize response to JSON format.

	Returns

	serialized response

	Return type

	str

qcg.pilotjob.resume module

	
class qcg.pilotjob.resume.StateTracker(path)

	Bases: object

This class traces incoming requests and job status changes to record current state which can be used
to resume prematurely interrupted execution of QCG-Pilot job service.

Initialize state tracker.

	
reqs_file

	
	Type

	str

	
finished_file

	
	Type

	str

	Parameters

	path - path to the directory where tracker files will be saved, if None, the current working directory (*) – will be used

	
static resume(path, manager, progress=False)

	Resume interrupted task iterations execution.

	Parameters

	
	path (*) –

	manager (*) –

	
new_submited_jobs(jobs)

	Register new submit job request.
The new request is appended to all previous requests in the self.reqs_file file.

	Parameters

	jobs (*) –

	
job_finished(job, iteration)

	Register finished job status change.
In case of final task (iterations) status change (SUCCEED, FAILED, CANCELED, OMITTED) task identifier with
the final state is saved to the self.finished_file file.

	Parameters

	
	job (*) –

	iteration (*) –

	
all_jobs_finished()

	All submited job’s finished successfully.
The tracker files should be removed.

qcg.pilotjob.scheduler module

	
class qcg.pilotjob.scheduler.Scheduler(resources)

	Bases: object

Resource orchestration.

	
_resources

	available resources

	Type

	Resources

	
_scheduler_alg

	scheduler algorithm

	Type

	SchedulerAlgorithm

	
_active_allocations

	currently active allocations

	Type

	set(Allocation)

Initialize scheduler.

	Parameters

	resources (Resources) – available resources

	
allocate_cores(min_cores, max_cores=None)

	Create allocation with given number of cores.

	Parameters

	
	min_cores (int) – minimum requested number of cores

	max_cores (int) – maximum requested number of cores, if None ‘min_cores’
will mean also ‘max_cores’

	Returns

	created allocation or None if not enough free resources

	Return type

	Allocation

	Raises

	NotSufficientResources – when there are not enough resources avaiable

	
allocate_job(resources)

	Create allocation for job with given resources.

	Parameters

	resources (JobResources) – job’s resource requirements

	Returns

	created allocation or None if not enough free resources

	Return type

	Allocation

	Raises

	
	NotSufficientResources – when there are not enough resources avaiable

	InvalidResourceSpec – when resource requirements are not valid

	
release_allocation(alloc)

	Release resources assigned for the specificated allocation.

	Parameters

	alloc (Allocation) – allocation to release

	Raises

	InvalidAllocation – when the allocation is not registered in the scheduler (it
might be released earlier)

qcg.pilotjob.scheduleralgo module

	
class qcg.pilotjob.scheduleralgo.SchedulerAlgorithm(resources=None)

	Bases: object

Scheduling algorithm.

	
resources

	available resources

	Type

	Resources

Initialize scheduling algorithm

	Parameters

	resources (Resources, optional) – available resources

	
allocate_cores(min_cores, max_cores=None)

	Create allocation with maximum number of cores from given range.

The cores will be allocated in a linear method.

	Parameters

	
	min_cores (int) – minimum requested number of cores

	max_cores (int) – maximum requested number of cores

	Returns

	created allocation
None: not enough free resources

	Return type

	Allocation

	Raises

	
	NotSufficientResources – when there are not enough resources avaiable

	InvalidResourceSpec – when the min_cores < 0 or min_cores > max_cores

	
allocate_job(reqs)

	Create allocation for job with given resource requirements.

	Parameters

	reqs (JobResources) – job’s resource requirements

	Returns

	created allocation or None if not enough free resources

	Return type

	Allocation

	Raises

	
	NotSufficientResources – when there are not enough resources avaiable

	InvalidResourceSpec – when resource requirements are not valid

qcg.pilotjob.service module

qcg.pilotjob.slurmres module

	
class qcg.pilotjob.slurmres.SlurmArg

	Bases: enum.Enum

An enumeration.

	
CPU_BIND()

	

	
qcg.pilotjob.slurmres.parse_local_cpus()

	Return information about available CPU’s and cores in local system.
The information is gathered from lscpu command which besides the available CPUs informations, also returns
information about physical cores in the system, which is usefull for hyper threading systems.

	Returns

	
	two maps with mapping:

	core_id -> list of cpu’s assigned to core
cpu_id -> list of cores (in most situations this will be a single element list)

	Return type

	dict(str, list), dict(str, list)

	
qcg.pilotjob.slurmres.parse_nodelist(nodespec)

	Return full node names based on the Slurm node specification.

This method calls scontrol show hostnames to get real node host names.

	Parameters

	nodespec (str) – Slurm node specification

	Returns

	node hostnames

	Return type

	list(str)

	
qcg.pilotjob.slurmres.get_allocation_data()

	Get information about slurm allocation and pack it into dictionary.
The information is obtained by ‘scontrol show job’ command

	Returns

	
	list of all allocation attributes and values and also a dictionary, a dictionary

	might be used to check if any element exist in attributes, but for some attributes like Node, CPU_IDs they
are not uniq so in the map there will be just the last occurence of these attributes; remember that
the dictionary doesn’t contain information about attributes order.

	Return type

	dict(str,str)

	
qcg.pilotjob.slurmres.parse_slurm_cpu_binding(cpu_bind_list)

	Return CPU identifier list based on Slurm’s SLURM_CPU_BIND_LIST variable’s value.

	Parameters

	cpu_bind_list (str) – the value of SLURM_CPU_BIND_LIST

	Returns

	list of CPU identifiers

	Return type

	list (int)

	
qcg.pilotjob.slurmres.parse_slurm_job_cpus(cpus)

	Return number of cores allocated on each node in the allocation.

This method parses value of Slurm’s SLURM_JOB_CPUS_PER_NODE variable’s value.

	Parameters

	cpus (str) – the value of SLURM_JOB_CPUS_PER_NODE

	Returns

	the number of cores on each node

	Return type

	list (int)

	
qcg.pilotjob.slurmres.get_num_slurm_nodes()

	Return number of nodes in Slurm allocation.

	Returns

	number of nodes

	Return type

	int

	
qcg.pilotjob.slurmres.parse_slurm_resources(config)

	Return resources availabe in Slurm allocation.

	Parameters

	config (dict) – QCG-PilotJob configuration

	Returns

	resources available in Slurm allocation

	Return type

	Resources

	
qcg.pilotjob.slurmres.parse_slurm_allocation_cpu_ids(allocation_data_list, node_names, cores_num)

	Based on allocation data obtained via ‘scontrol show job –detail’ return information about core bindings per
node.
The information in the allocation data is optimized, so getting those binding might be tricky.
The data can be described in form:

Nodes=c[1-2] CPU_IDs=0 Mem=0 GRES=

but also as:

Nodes=c1 CPU_IDs=1 Mem=0 GRES=
Nodes=c2 CPU_IDs=0 Mem=0 GRES=

	Parameters

	
	allocation_data_list (dict) – allocation data (as map (‘map’ key) and list (‘list’))

	node_names (list(str)) – node names for which the binding should be parsed

	cores_num (list(int)) – the number of allocated cores for given nodes (the binding information must match #
of cores)

	Returns

	map with node names as keys and binded core list as value

	Return type

	dict

	
qcg.pilotjob.slurmres.parse_slurm_env_binding(slurm_cpu_bind_list, node_names, cores_num)

	Based on environment varialbe SLURM_CPU_BIND_LIST set by slurm return information about core bindings per node.
WARNING: those information might not be as precise as those obtained from allocation data, as environment variable
contain the same information for all nodes, so if not all nodes has the same architecture and number of allocated
cores the information might not be correct.

	Parameters

	
	slurm_cpu_bind_list (str) – value of SLURM_CPU_BIND_LIST variable

	node_names (list(str)) – name of the nodes

	cores_num (list(int)) – number of cores on each node

	Returns

	map with node names and core identifier list

	Return type

	dict(str,int)

	
qcg.pilotjob.slurmres.in_slurm_allocation()

	Check if program has been run inside slurm allocation.
We detect some environment variables (like SLURM_NODELIST) that are always set by slurm.

	Returns

	true if we are inside slurm allocation, otherwise false

	
qcg.pilotjob.slurmres.get_slurm_version()

	Return slurm version in current environment.
The Slurm version is obtained only once via srun –version command. In case of error during version obtaining,
the version is initialized with values: MAJOR(0), MINOR(0), PATCH(‘’)

	Returns

	tuple(int,int,str) - the major, minor and patch version of slurm in current environment

	
qcg.pilotjob.slurmres.find_slurm_version()

	Return version of Slurm.

This method calls srun --version and parses result in form MAJOR,MINOR,PATCH.

	Returns

	MAJOR,MINOR,PATCH

	Return type

	tuple (int,int,str)

	Raises

	SlurmEnvError - when `srun` command is unavailable or finished with non zero exit or if output does not match – expected pattern

	
qcg.pilotjob.slurmres.test_environment(env=None)

	Try to parse slurm resources based on environment passed as dictionary, or string where each
environment variable is placed in the separate line.
WARNING: some information must be gathered through slurm client programs like ‘scontrol’ so gathering resource
information only on environment variables is limited.

	Parameters

	env (dict|string,optional) – environment to test, if
None - the current environment is checked
dict - the environment in form of dictionary to be checked
string - the environment in form of string where each variable is placed in separate line

	Returns

	instance with gathered slurm information.

	Return type

	Resources

qcg.pilotjob.tests.job_stats module

	
qcg.pilotjob.tests.job_stats.analyze_job_report(report_path)

	

qcg.pilotjob.tests.profile_local_sleep module

qcg.pilotjob.tests.test_api module

qcg.pilotjob.tests.test_fileinterface module

qcg.pilotjob.tests.test_governor module

qcg.pilotjob.tests.test_iterschedulers module

qcg.pilotjob.tests.test_jobdescription module

qcg.pilotjob.tests.test_localmanager module

qcg.pilotjob.tests.test_qcgpj_executor module

qcg.pilotjob.tests.test_requests module

qcg.pilotjob.tests.test_resources module

qcg.pilotjob.tests.test_resume module

qcg.pilotjob.tests.test_scheduler module

qcg.pilotjob.tests.test_slurmenv module

qcg.pilotjob.tests.test_slurmenv_api module

qcg.pilotjob.tests.test_utils module

qcg.pilotjob.tests.utils module

qcg.pilotjob.tests package

Submodules

	qcg.pilotjob.tests.job_stats module

	qcg.pilotjob.tests.profile_local_sleep module

	qcg.pilotjob.tests.test_api module

	qcg.pilotjob.tests.test_fileinterface module

	qcg.pilotjob.tests.test_governor module

	qcg.pilotjob.tests.test_iterschedulers module

	qcg.pilotjob.tests.test_jobdescription module

	qcg.pilotjob.tests.test_localmanager module

	qcg.pilotjob.tests.test_qcgpj_executor module

	qcg.pilotjob.tests.test_requests module

	qcg.pilotjob.tests.test_resources module

	qcg.pilotjob.tests.test_resume module

	qcg.pilotjob.tests.test_scheduler module

	qcg.pilotjob.tests.test_slurmenv module

	qcg.pilotjob.tests.test_slurmenv_api module

	qcg.pilotjob.tests.test_utils module

	qcg.pilotjob.tests.utils module

qcg.pilotjob.utils.auxdir module

	
qcg.pilotjob.utils.auxdir.is_aux_dir(path)

	Check if given path can be an auxiliary directory. The name pattern and type (directory) is checked.

	Parameters

	path (str) – path to check

	Returns

	an absolute path if given path exists, is directory and name matches the auxiliary pattern, else None

	Return type

	str

	
qcg.pilotjob.utils.auxdir.find_aux_dirs(path)

	Find in given path directories which names matches auxiliary directory name pattern.

	Parameters

	path (str) – path where auxiliary directories will be searched

	Returns

	list of paths with directories matches auxiliary name pattern

	Return type

	list(str)

	
qcg.pilotjob.utils.auxdir.find_single_aux_dir(path)

	Find exactly one auxiliary directory in given path, in other case raise exception.

	Parameters

	path (str) – path where to find auxiliary directory

	Returns

	auxiliary directory path in given path

	Return type

	str

	
qcg.pilotjob.utils.auxdir.find_latest_aux_dir(path)

	Find exactly one, the last modified, auxiliary directory in given path, in other case raise exception.

	Parameters

	path (str) – path where to find auxiliary directory

	Returns

	auxiliary directory path in given path

	Return type

	str

	
qcg.pilotjob.utils.auxdir.find_report_files(path)

	Find all files named jobs.report in qcg-pilotjob auxiliary directories in given path.
First we look for auxilary directories, and then in those dirs we look for jobs.report files.

	Parameters

	path (str) – path to directory where to look for report files

	Returns

	list of all jobs.report files in given path.

	Return type

	list(str)

	
qcg.pilotjob.utils.auxdir.find_final_status_files(path)

	Find all files named final_status.json in qcg-pilotjob auxiliary directories in given path.
First we look for auxilary directories, and then in those dirs we look for final_status.json files.

	Parameters

	path (str) – path to directory where to look for report files

	Returns

	list of all final_status.json files in given path.

	Return type

	list(str)

	
qcg.pilotjob.utils.auxdir.find_log_files(path)

	Find all files named service.log in qcg-pilotjob auxiliary directories in given path.
First we look for auxilary directories, and then in those dirs we look for service.log files.

	Parameters

	path (str) – path to directory where to look for log files

	Returns

	list of all service.log files in given path.

	Return type

	list(str)

	
qcg.pilotjob.utils.auxdir.find_proc_traces_files(path)

	Find in given path files which names matches processes trace log name pattern.

	Parameters

	path (str) – path where processes trace logs will be searched

	Returns

	list of paths with files matches processes trace logs name pattern

	Return type

	list(str)

	
qcg.pilotjob.utils.auxdir.find_rtimes_files(path)

	Find in given path files which names matches processes real times log name pattern.

	Parameters

	path (str) – path where real times logs will be searched

	Returns

	list of paths with files matches processes real times logs name pattern

	Return type

	list(str)

qcg.pilotjob.utils.proc_traces module

	
class qcg.pilotjob.utils.proc_traces.ProcTraces(paths, ignore_errors=True)

	Bases: object

Analyze process traces.

	Atributes:

	paths (list(str)) - paths with traces files
ignore_errors (bool) - raise exception when error occur
nodes_procs (dict(str,dict)) - a dictionary with node names as keys and process data as values

each process data is dictionary with pid (as string) as a key and dictionary of attributes as value

	
read()

	Read process traces from log files.

	
get_process(job_pid, node_name=None)

	Find process data with given pid.

If node_name is not specified, and there are more than single process with given pid
on all nodes the first encountered process is returned.

	Parameters

	
	job_pid (str,int) –

	node_name (str) – are searched

	Returns

	process data

	Return type

	dict

	
childs_on_other_nodes(process, slurm_step_id=None)

	Find child process on other nodes not explicitely linked.
For example when launching openmpi application where some of the instances will be launched
on other nodes, mpirun should launch ‘orted’ deamon (via slurm) with identifier. When
we find that such process has been created, we can look for ‘orted’ processes on other nodes
with the same identifier.

	Parameters

	
	process (dict) –

	slurm_step_id (str) - a slurm's step identifier (optional) –

	Returns

	list of process identifiers that has been run on other nodes

	Return type

	list(str)

	
process_iterator(pid, node_name=None)

	Generator which iterates on process and it’s childs.

	Parameters

	
	pid (str,int) –

	node_name (str) –

	Returns

	a pair with process data and level of nesting in tree

	Return type

	dict, int

qcg.pilotjob.utils.processes module

qcg.pilotjob.utils.reportstats module

	
class qcg.pilotjob.utils.reportstats.JobsReportStats(report_files, log_files=None, rt_files=None, final_files=None, verbose=False)

	Bases: object

Analyze QCG-PJM execution.

	Parameters

	
	report_files (list(str)) –

	log_files (list(str)) –

	
static from_workdir(workdir, verbose=False)

	

	
has_realtime_stats()

	

	
job_stats()

	

	
global_stats()

	

	
resources()

	

	
job_info(*job_ids)

	

	
filter_jobs(filter_def)

	

	
allocation_jobs(node_name, core_name)

	

	
job_start_finish_launch_overheads(details=False)

	

	
gantt(output_file, real=True)

	

	
gantt_gaps(output_file, real=True)

	

	
resource_usage(from_first_job=False, until_last_job=False, details=False)

	

	
efficiency(details=False)

	

	
efficiency_core(dest_node_name, dest_core_name, details=False)

	

qcg.pilotjob.utils.slurmenvresources module

	
class qcg.pilotjob.utils.slurmenvresources.SlurmEnvResources(args=None)

	Bases: object

Parse slurm resources based on environment settings.

	Parameters

	args (str[]) –

	
parse()

	

qcg.pilotjob.utils.util module

	
class qcg.pilotjob.utils.util.Singletone

	Bases: type

Singletone metaclass.
The role of this class (as name suggests) is to ensure that all objects of class defined as:

SomeClass(metaclass=Singletone)

has the same, common instance.

	
qcg.pilotjob.utils.util.parse_datetime(datetime_str)

	Convert ISO date time from string to datetime

qcg.pilotjob.utils package

Submodules

	qcg.pilotjob.utils.auxdir module

	qcg.pilotjob.utils.proc_traces module

	qcg.pilotjob.utils.processes module

	qcg.pilotjob.utils.reportstats module

	qcg.pilotjob.utils.slurmenvresources module

	qcg.pilotjob.utils.util module

qcg.pilotjob namespace

Subpackages

	qcg.pilotjob.api package
	Submodules
	qcg.pilotjob.api.errors module

	qcg.pilotjob.api.job module

	qcg.pilotjob.api.jobinfo module

	qcg.pilotjob.api.manager module

	qcg.pilotjob.cmds package
	Submodules
	qcg.pilotjob.cmds.processes module

	qcg.pilotjob.cmds.report module

	qcg.pilotjob.executor_api package
	Subpackages
	qcg.pilotjob.executor_api.templates package
	Submodules
	qcg.pilotjob.executor_api.templates.basic_template module

	qcg.pilotjob.executor_api.templates.qcgpj_template module

	Submodules
	qcg.pilotjob.executor_api.qcgpj_executor module

	qcg.pilotjob.executor_api.qcgpj_future module

	qcg.pilotjob.launcher package
	Submodules
	qcg.pilotjob.launcher.agent module

	qcg.pilotjob.launcher.launcher module

	qcg.pilotjob.launcher.procstats module

	qcg.pilotjob.launcher.rtstats module

	qcg.pilotjob.tests package
	Submodules
	qcg.pilotjob.tests.job_stats module

	qcg.pilotjob.tests.profile_local_sleep module

	qcg.pilotjob.tests.test_api module

	qcg.pilotjob.tests.test_fileinterface module

	qcg.pilotjob.tests.test_governor module

	qcg.pilotjob.tests.test_iterschedulers module

	qcg.pilotjob.tests.test_jobdescription module

	qcg.pilotjob.tests.test_localmanager module

	qcg.pilotjob.tests.test_qcgpj_executor module

	qcg.pilotjob.tests.test_requests module

	qcg.pilotjob.tests.test_resources module

	qcg.pilotjob.tests.test_resume module

	qcg.pilotjob.tests.test_scheduler module

	qcg.pilotjob.tests.test_slurmenv module

	qcg.pilotjob.tests.test_slurmenv_api module

	qcg.pilotjob.tests.test_utils module

	qcg.pilotjob.tests.utils module

	qcg.pilotjob.utils package
	Submodules
	qcg.pilotjob.utils.auxdir module

	qcg.pilotjob.utils.proc_traces module

	qcg.pilotjob.utils.processes module

	qcg.pilotjob.utils.reportstats module

	qcg.pilotjob.utils.slurmenvresources module

	qcg.pilotjob.utils.util module

Submodules

	qcg.pilotjob.allocation module

	qcg.pilotjob.client_cmd module

	qcg.pilotjob.command_line module

	qcg.pilotjob.config module

	qcg.pilotjob.environment module

	qcg.pilotjob.errors module

	qcg.pilotjob.executionjob module

	qcg.pilotjob.executionschema module

	qcg.pilotjob.executor module

	qcg.pilotjob.fileinterface module

	qcg.pilotjob.iterscheduler module

	qcg.pilotjob.joblist module

	qcg.pilotjob.localres module

	qcg.pilotjob.logger module

	qcg.pilotjob.manager module

	qcg.pilotjob.parseres module

	qcg.pilotjob.partitions module

	qcg.pilotjob.profile module

	qcg.pilotjob.publisher module

	qcg.pilotjob.receiver module

	qcg.pilotjob.reports module

	qcg.pilotjob.request module

	qcg.pilotjob.resources module

	qcg.pilotjob.response module

	qcg.pilotjob.resume module

	qcg.pilotjob.scheduler module

	qcg.pilotjob.scheduleralgo module

	qcg.pilotjob.service module

	qcg.pilotjob.slurmres module

	qcg.pilotjob.zmqinterface module

qcg.pilotjob.zmqinterface module

	
class qcg.pilotjob.zmqinterface.ZMQInterface

	Bases: object

ZMQ interface for QCG-PilotJob.

	
zmq_ctx

	ZMQ context

	Type

	Context

	
socket

	ZMQ socket

	Type

	socket

	
address

	address of ZMQ interface from configuration

	Type

	str

	
local_port

	listen port number

	Type

	int

	
real_address

	address obtained from getsockopt

	Type

	str

	
external_address

	address on external network interface (not on private ips)

	Type

	str

Initialize ZMQ interface.

	
classmethod name()

	Return interface name.

	Returns

	interface name

	Return type

	str

	
setup(conf)

	Open ZMQ interface.

If port number is not specified in QCG-PilotJob configuration, it is chosen randomly from configured range.

	
close()

	Close ZMQ socket.

	
receive()

	Wait for incoming request.

	Returns

	incoming request

	Return type

	dict

	
reply(reply_msg)

	Sent reply.

	Parameters

	reply_msg (str) – message to sent

 nav.xhtml

 Table of Contents

 		
 QCG-PilotJob

 		
 Overview

 		
 Components

 		
 Installation

 		
 Preparation of virtualenv (optional step)

 		
 Installation of QCG-PilotJob packages

 		
 PyPi

 		
 GitHub

 		
 Examples

 		
 Example API application

 		
 Example batch usage

 		
 Modes of execution

 		
 Scheduling systems

 		
 Local execution

 		
 Parallelism

 		
 MPI

 		
 OpenMP

 		
 QCG-PilotJob Manager options

 		
 Key concepts

 		
 Modules

 		
 Queue & scheduler

 		
 Executors

 		
 Execution environments

 		
 Slurm execution environment

 		
 QCG Execution environment

 		
 Execution models

 		
 Examples

 		
 File based interface

 		
 File interface usage

 		
 Requests file

 		
 Commands

 		
 submit

 		
 listJobs

 		
 jobStatus

 		
 jobInfo

 		
 control

 		
 cancelJob

 		
 removeJob

 		
 resourcesInfo

 		
 finish

 		
 Executor API

 		
 Installation

 		
 Usage

 		
 QCGPJExecutor

 		
 Submission of tasks

 		
 Example template

 		
 QCGPJFuture

 		
 Iteration resources schedulers

 		
 maximum-iters

 		
 split-into

 		
 Resuming prematurely interrupted computations

 		
 General

 		
 Invocation

 		
 Operation

 		
 Issues

 		
 Performance statistics

 		
 Performance measurements and data collection

 		
 Wrapper installation

 		
 Launch of QCG-PilotJob service with collection of external metrics

 		
 Analysis tool - qcg-pm-report

 		
 stats

 		
 launch-stats

 		
 gantt

 		
 gantt-gaps

 		
 rusage

 		
 efficiency

 		
 Performance tuning

 		
 Node launcher agents

 		
 Reserving a core for QCG PJM

 		
 Processes statistics

 		
 How it works

 		
 How to use

 		
 Log files

 		
 Slurm performance

 		
 srun command

 		
 Recommendations

 		
 Agents

 		
 User parallel applications

 		
 FAQ

 		
 How is QCG-PilotJob better than a BASH script?

 		
 How is QCG-PilotJob better than existing Workflow / Pilot Job implementations?

 		
 Dictionary

 		
 License

 		
 qcg.pilotjob.api package

 		
 Submodules

 		
 qcg.pilotjob.api.errors module

 		
 qcg.pilotjob.api.job module

 		
 qcg.pilotjob.api.jobinfo module

 		
 qcg.pilotjob.api.manager module

 		
 qcg.pilotjob.executor_api package

 		
 Subpackages

 		
 qcg.pilotjob.executor_api.templates package

 		
 Submodules

 		
 qcg.pilotjob.executor_api.qcgpj_executor module

 		
 qcg.pilotjob.executor_api.qcgpj_future module

_static/ajax-loader.gif

_images/example-qcg-gantt-gaps.png
Cores

tcn338:0
tcn338:1
tcn338:2
tcn338:3
tcn338:4
tcn338:5
tcn338:6
tcn338:7
tcn338:8
tcn338:9
tcn338:10

tcn338:

1

tcn338:12

tcn338:
tcn338:

3
4

tcn338:15

tcn338:

6

tcn338:17
tcn338:18

tcn338:

9

tcn338:20
tcn338:21
tcn338:22
tcn338:23

tcn44.
tcné4.

:0
1

tcn441:2

tcn44.

3

tcn441:4
tcn441:5

tcn44.

6

tcn441:7

tcné4.

tcn44.

8
9

tcn441:10

tcn441:

1

tcn441:12
tcn441:13

tcn441:

4

tcn441:15

tcn441:
tcn441:

6
7

tcn441:18

tcn441:

9

tcn441:20
tcn441:21
tcn441:22
tcn441:23
tcn232:0
tcn232:1
tcn232:2
tcn232:3
tcn232:4
tcn232:5
tcn232:6
tcn232:7
tcn232:8
tcn232:9
tcn232:10

tcn232:
tcn232:

1
2

tcn232:13

tcn232:

4

tcn232:15
tcn232:16

tcn232:

7

tcn232:18

tcn232:

9

tcn232:20
tcn232:21
tcn232:22
tcn232:23
tcn303:0
tcn303:1
tcn303:2
tcn303:3
tcn303:4
tcn303:5
tcn303:6
tcn303:7
tcn303:8
tcn303:9
tcn303:10

tcn303:
tcn303:

1
2

tcn303:13

tcn303:

4

tcn303:15
tcn303:16

tcn303:

7

tcn303:18

tcn303:

9

tcn303:20
tcn303:21
tcn303:22
tcn303:23

14:14:45
Apr 14, 2021

14:15:00

14:15:15

14:15:30

14:15:45

-
i
=
[e)]
[4;]
....ll- L mmEE T L] _—TT L

14:16:00

Job
W gap

_images/example-qcg-gantt.png
Cores

tcn338:0
tcn338:1
tcn338:2
tcn338:3
tcn338:4
tcn338:5
tcn338:6
tcn338:7
tcn338:8
tcn338:9

tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:
tcn338:

tcn44.
tcn44.
tcnd4.
tcn44.
tcn44
tcnd4.
tcn44.
tcn44
tcn44.
tcn44.

tcn441:
tcn441:
tcn441:
tcn441:
tcn441:
tcn441:
tcn441:
tcn441:
tcn441:
tcn441:
:20
21

tcn44
tcn44

tcn441:
23

tcn44

0

© 0 N O U A WwWN P

20
21
22
23

© N O U WNRPO®OONOORWNRPO

22

tcn232:0
tcn232:1
tcn232:2
tcn232:3
tcn232:4
tcn232:5
tcn232:6
tcn232:7
tcn232:8
tcn232:9

tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:
tcn232:

0

© 0 N O U A WN P

20
21
22
23

tcn303:0
tcn303:1
tcn303:2
tcn303:3
tcn303:4
tcn303:5
tcn303:6
tcn303:7
tcn303:8
tcn303:9

tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:
tcn303:

0

© 0 N O U A WN P

20
21
22
23

mpi_test_longer:6
mpi_test_longer:9
mpi_test_longer:1
mpi_test_longer:5
mpi_test_longer:0
mpi_test_longer:7
mpi_test_longer:3
mpi_test_longer:2
mpi_test_longer:11
mpi_test_longer:4
mpi_test_longer:8
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:
mpi_test_longer:20
mpi_test_longer:21
mpi_test_longer:22
mpi_test_longer:23

® © N U o h~N®WO

mpi_test_longer:24
mpi_test_longer:26
mpi_test_longer:25
mpi_test_longer:27
mpi_test_longer:29
mpi_test_longer:28
mpi_test_longer:30
mpi_test_longer:32
mpi_test_longer:31
mpi_test_longer:34
mpi_test_longer:35
mpi_test_longer:33

mpi_test_shorter:0
mpi_test_shorter:8
mpi_test_shorter:12
mpi_test_shorter:4
mpi_test_shorter:1
mpi_test_shorter:9
mpi_test_shorter:13
mpi_test_shorter:5
mpi_test_shorter:2
mpi_test_shorter:10
mpi_test_shorter:14
mpi_test_shorter:6
mpi_test_shorter:11
mpi_test_shorter:3
mpi_test_shorter:15
mpi_test_shorter:7
mpi_test_shorter:24
mpi_test_shorter:20

mpi_test_shorter:16
mpi_test_shorter:22
mpi_test_shorter:17
mpi_test_shorter:25
mpi_test_shorter:26
mpi_test_shorter:21
mpi_test_shorter:18
mpi_test_shorter:27
mpi_test_shorter:23
mpi_test_shorter:19
mpi_test_shorter:28
mpi_test_shorter:29
mpi_test_shorter:30
mpi_test_shorter:31
mpi_test_longer:37

mpi_test_longer:36

mpi_test_longer:38

mpi_test_longer:39

mpi_test_shorter:33
mpi_test_shorter:32
mpi_test_shorter:37
mpi_test_shorter:34
mpi_test_shorter:38
mpi_test_shorter:36
mpi_test_shorter:41
mpi_test_shorter:35
mpi_test_shorter:42
mpi_test_shorter:44
mpi_test_shorter:39
mpi_test_shorter:40
mpi_test_shorter:43
mpi_test_shorter:45
mpi_test_shorter:48
mpi_test_shorter:47
mpi_test_shorter:46
mpi_test_shorter:49
mpi_test_shorter:53
mpi_test_shorter:50

mni tact chnrtar&1

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/qcg-pj-logo.png
QCe

@ -iorToB

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

