
QCG-PilotJob

Mar 22, 2023

Basics

1 Overview 3

2 Installation 5

3 Examples 7

4 Modes of execution 11

5 Parallelism 15

6 QCG-PilotJob Manager options 19

7 Key concepts 23

8 Execution environments 25

9 Execution models 27

10 File based interface 31

11 Executor API 39

12 Iteration resources schedulers 43

13 Resuming prematurely interrupted computations 45

14 Performance statistics 47

15 Performance tuning 55

16 Processes statistics 57

17 Log files 61

18 Slurm performance 63

19 FAQ 67

20 Dictionary 69

i

21 License 71

22 qcg.pilotjob.api package 75

23 qcg.pilotjob.executor_api package 87

24 Indices and tables 91

25 Authors 93

Python Module Index 95

Index 97

ii

QCG-PilotJob

A python service for easy execution of many tasks inside a single allocation.

Basics 1

QCG-PilotJob

2 Basics

CHAPTER 1

Overview

The QCG-PilotJob system is designed to schedule and execute many small jobs inside one scheduling system alloca-
tion. Direct submission of a large group of jobs to a scheduling system can result in long aggregated time to finish
as each single job is scheduled independently and waits in a queue. On the other hand the submission of a group
of jobs can be restricted or even forbidden by administrative policies defined on clusters. One can argue that there
are available job array mechanisms in many systems, however the traditional job array mechanism allows to run only
bunch of jobs having the same resource requirements while jobs being parts of larger workflows by nature vary in
requirements and therefore need more flexible solutions.

The core component of QCG-PilotJob system is QCG-PilotJob Manager. From the scheduling system perspective,
QCG-PilotJob Manager, is seen as a single job inside a single user allocation. It means that QCG-PilotJob Manager
controls an execution of a complex experiment consisting of many jobs on resources reserved for the single job
allocation. The manager listens to user’s requests and executes commands like submit job, cancel job and report
resources usage. In order to manage the resources and jobs the system takes into account both resources availability
and mutual dependencies between jobs. Two interfaces are defined to communicate with the system: file-based (batch
mode) and API based. The former one is dedicated and more convenient for a static scenarios when a number of jobs
is known in advance to the QCG-PilotJob Manager start. The API based interface is more general and flexible as it
allows to dynamically send new requests and track execution of previously submitted jobs during the run-time.

To allow user’s to test their scenarios, QCG-PilotJob Manager supports local execution mode, in which all job’s are
executed on local machine and doesn’t require any scheduling system allocation.

QCG-PilotJob’s source code is publicly available at: https://github.com/vecma-project/QCG-PilotJob

1.1 Components

QCG-PilotJob consists of three components:

QCG-PilotJob Core the essential part of the software, provides all basic mechanism needed to use QCG-PilotJob

QCG-PilotJob Command Line Tools a set of command line tools for reporting and analysis of QCG-PilotJob exe-
cution

QCG-PilotJob Executor API an alternative, simplified API for QCG-PilotJob

3

https://github.com/vecma-project/QCG-PilotJob

QCG-PilotJob

4 Chapter 1. Overview

CHAPTER 2

Installation

QCG-PilotJob requires Python version >= 3.6.

All QCG-PilotJob components can be installed by a regular user (without administrative privileges) In the presented
instructions we assume such type of installation.

2.1 Preparation of virtualenv (optional step)

In order to make dependency management easier, a good practice is to install QCG-PilotJob into a fresh virtual envi-
ronment. To do so, we need the latest version of pip package manager and virtualenv. They can be installed in user’s
directory by the following commands:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3 get-pip.py --user
pip install --user virtualenv

To create private virtual environment for installed packages, type the following commands:

virtualenv venv
. venv/bin/activate

2.2 Installation of QCG-PilotJob packages

There are two options for the actual installation of QCG-PilotJob packages. You can use the PyPi repository or install
the packages from GitHub.

2.2.1 PyPi

The installation of QCG-PilotJob Core package from the PyPi repository is as simple as:

5

QCG-PilotJob

pip install qcg-pilotjob

In a similar way you can install supplementary packages, namely QCG-PilotJob Command Line Tools and QCG-
PilotJob Executor API:

pip install qcg-pilotjob-cmds
pip install qcg-pilotjob-executor-api

2.2.2 GitHub

To install QCG-PilotJob packages directly from github.com you can use the following commands:

pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git
→˓#subdirectory=components/core
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git
→˓#subdirectory=components/cmds
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git
→˓#subdirectory=components/executor_api

You can also install the packages from a specific branch:

pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git@branch_
→˓name#subdirectory=components/core
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git@branch_
→˓name#subdirectory=components/cmds
pip install --upgrade git+https://github.com/vecma-project/QCG-PilotJob.git@branch_
→˓name#subdirectory=components/executor_api

6 Chapter 2. Installation

CHAPTER 3

Examples

QCG-PilotJob Manager can be used in two different ways:

• as an service accessible with API

• as a command line utility to execute static, prepared job workflows in a batch mode

The first method allows to dynamically control the jobs execution.

3.1 Example API application

Let’s write a simple program that will runs 4 instances of simple bash script.

First, we must create an instance of QCG-PilotJob Manager

from qcg.pilotjob.api.manager import LocalManager

manager = LocalManager()

This default instance, when launched outside Slurm scheduling system allocation, will use all local available CPU’s.
To check what resources are available for our future jobs, we call a resources method.

print('available resources: ', manager.resources())

In return we should give something like:

available resources: {'total_nodes': 1, 'total_cores': 8, 'used_cores': 0, 'free_cores
→˓': 8}

where total_cores and free_cores depends on number of cores on machine where we are running this exam-
ple. So our programs will have access to all free_cores, and QCG-PilotJob manager will make sure that tasks do
not interfere with each other, so the maximum number of simultaneously running job’s will be exact free_cores.

To run jobs, we have to create a list of job descriptions and sent it to the QCG-PilotJob manager.

7

QCG-PilotJob

from qcg.pilotjob.api.job import Jobs
jobs = Jobs().add(script='echo "job ${it} executed at `date` @ `hostname`"', stdout=
→˓'job.out.${it}', iteration=4)
job_ids = manager.submit(jobs)
print('submited jobs: ', str(job_ids))

In this code, we submitted a job with four iterations. The standard output stream should be redirected to file job.out
with iteration index as postfix. As a program to execute in job iteration, we passed the simple bash command. The
above code should print a list with just one element: the submitted job identifier. Because we didn’t name our job,
the automatically generated name was returned. The job name can passed as keyword argument name to Jobs.add
method.

Note: In the example above we presented the simplified API to submit a job. In case of more complicated scenarios
we can use the full JSON description to define a submitted job by using Jobs.add_std method where all JSON at-
tributes are passed as keyword parameters. The full list of accepted parameters can be found in the submit command
documentation described in the File based interface document.

Now we can check the status of our submitted job:

job_status = manager.status(job_ids)
print('job status: ', job_status)

The job_status should contain dictionary jobs with our job status information. Because our job was very short,
and should finish immediately, the state key of data dictionary of our job’s status, should contain value SUCCEED.
For longer jobs, we may want to wait until our submitted jobs finish, to do this we use the wait4 Manager method:

manager.wait4(job_ids)

Alternatively we can use the wait4all method, which will wait until all submitted to the QCG-PilotJob Manager
jobs finish:

manager.wait4all()

If we check current directory, we can see that bunch of job.out. files has been created with a proper content. If we
want to get detailed information about our job, we can use the info method:

job_info = manager.info(job_ids)
print('job detailed information: ', job_info)

In return we will get information about iterations (how many finished successfully, how many failed) and when our
job finished.

It is important to call finish method at the end of our program. This method sent a proper command to QCG-
PilotJob Manager instance, and terminates the background thread in which the instance has been run.

manager.finish()

QCG-PilotJob Manager creates a directory .qcgpjm-service- where the following files are stored:

• service.log - logs of QCG-PilotJob Manager, very useful in case of problems

• jobs.report - the file containing information about all finished jobs, by default written in text format, but
there is an option for JSON format which will be easier to parse.

See also:

8 Chapter 3. Examples

QCG-PilotJob

The full documentation of the API methods and it’s arguments is available in the qcg.pilotjob.api package documen-
tation.

3.2 Example batch usage

The same jobs we can launch using the batch method and prepared input files. In this mode, we have to create JSON
file with all requests we want to sent to QCG-PilotJob Manager. For example, the file contains jobs we submitted in
previous section will look like this:

[
{
"request": "submit",
"jobs": [

{
"name": "example",
"iteration": { "stop": 4 },
"execution": {
"script": "echo \"job ${it} executed at `date` @ `hostname`\"",
"stdout": "job.out.${it}"

}
}

]
},
{
"request": "control",
"command": "finishAfterAllTasksDone"

}
]

After placing above content in the JSON file, for example jobs.json, we can execute this workflow with:

$ python -m qcg.pilotjob.service --file-path jobs.json

Alternatively, we can use the qcg-pm-service command alias, that is installed with qcg-pilotjob Python
package.

$ qcg-pm-service --file-path jobs.json

In the input file, we have placed two requests:

• submit - with job description we want to run

• control - with finishAfterAllTasksDone command, which is required to finish QCG-PilotJob Man-
ager (the service might listen also on other interfaces, like ZMQ network interface, and must explicitly know
when no more requests will come and service may be stopped.

The result of executing QCG-PilotJob Manager with presented example file should be the same as using the API - the
bunch of output files should be created, as well as .qcgpjm-service- directory with additional files.

3.2. Example batch usage 9

QCG-PilotJob

10 Chapter 3. Examples

CHAPTER 4

Modes of execution

In the previously presented examples we submitted a single CPU applications. However QCG-PilotJob Manager
is intended for use in HPC environments, especially with Slurm scheduling system. The execution on a cluster is
therefore a default mode of execution of QCG-PilotJob. In order to support users in testing their scenarios before the
actual execution on a cluster, QCG-PilotJob can be also run in a local environment. Below we present these two modes
of execution of QCG-PilotJob.

4.1 Scheduling systems

In case of execution via Slurm we submit a request to scheduling system and when requested resources are available,
the allocation is created and our application is run inside it. Of course we might run our job’s directly in scheduling
system without any pilot job mechanism, but we have to remember about some limitations of scheduling systems such
as - maximum number of submitted/executing jobs in the same time, queueing time (significant for large number of
jobs), job array mechanism only for same resource requirement jobs. Generally, scheduling systems wasn’t designed
for handling very large number of small jobs.

To use QCG-PilotJob Manager in HPC environment, we suggest to install QCG-PilotJob Manager via virtual environ-
ment in directory shared among all computing nodes (most of home directories are available from computing nodes).
On some systems, we need to load a proper Python >= 3.6 module before:

$ module load python/3.7.3

Next we can create virtual environment with QCG-PilotJob Manager:

$ python3 -m virtualenv $HOME/qcgpj-venv
$ source $HOME/qcgpj-venv/bin/activate
$ pip install qcg-pilotjob

Now we can use this virtual environment in our jobs. The example job submission script for Slurm scheduling system
that launched application myapp.py that uses QCG-PilotJob Manager API, may look like this:

11

QCG-PilotJob

#SBATCH --job-name=qcgpilotjob-ex
#SBATCH --nodes=2
#SBATCH --tasks-per-node=28
#SBATCH --time=60

module load python/3.7.3
source $HOME/qcgpj-venv/bin/activate

python myapp.py

Of course, some scheduling system might require some additional parameters like:

• --account - name of the account/grant we want to use

• --partition - the partition name where our job should be scheduled

To submit a job with QCG-PilotJob Manager in batch mode with JSON jobs description file, we have to change the
last line to:

python -m qcg.pilotjob.service --file-path jobs.json

Note: Affinity binding supported by Slurm and used by QCG-PilotJob may not work properly when allocation doesn’t
contain entire nodes, so we recommended running QCG-PilotJob on allocations with entire nodes reserved.

Note: Once QCG-PilotJob is submitted via Slurm or QCG middleware, it inherits the execution environment set by
those systems. Some environment variables, such as the location of a shared directory, may be useful in a user’s tasks.
In order to get more detailed information on this topic please see Execution environments.

4.2 Local execution

QCG-PilotJob Manager supports local mode that is suitable for locally testing execution scenarios. In contrast to
execution mode, where QCG-PilotJob Manager is executed in scheduling system allocation, all jobs are launched with
the usage of scheduling system. In the local mode, the user itself can define the size of available resources and execute
it’s scenario on such defined resources without the having access to scheduling system. It’s worth remembering that
QCG-PilotJob Manager doesn’t verify the physically available resources, also the executed jobs are not launched with
any core/processor affinity. Thus the performance of jobs might not be optimal.

The choice between allocation (in scheduling system allocation) or local mode is made automatically by the QCG
PilotJob Manager during the start. If scheduling system environment will be detected, the allocation mode will be
chosen. In other case, the local mode will be active, and if resources are not defined by the user, the default number of
available cores in the system will be taken.

The command line arguments, that also might by passed as argument server_args during instantiating the Local-
Manager , related to the local mode are presented below:

• --nodes NODES - the available resources definition; the NODES parameter should have format:

`[NODE_NAME]:CORES[,[NODE_NAME]:CORES]...`

• --envschema ENVSCHEMA - job execution environment; for each job QCG-PilotJob Manager can create
environment similar to the Slurm execution environment

Some examples of resources definition:

12 Chapter 4. Modes of execution

QCG-PilotJob

• --nodes 4 - single node with 4 available cores

• --nodes n1:2 - single named node with 2 available cores

• --nodes 4,2,2 - three unnamed nodes with 8 total cores

• --nodes n1:4, n2:4, n3:4 - three named nodes with 12 total cores

4.2. Local execution 13

QCG-PilotJob

14 Chapter 4. Modes of execution

CHAPTER 5

Parallelism

QCG-PilotJob Manager can handle jobs that require more than a single core. The number of required cores and nodes
is specified with numCores and numNodes parameter of Jobs.add method. The number of required resources
can be specified either as specific values or as a range of resources (with minimum and maximum values), where
QCG-PilotJob Manager will try to assign as much resources from those available in the moment. The environment of
parallel job is prepared for MPI or OpenMP jobs.

5.1 MPI

Running MPI programs on HPC systems can be a complex process, as it depends on chosen MPI implementation
(OpenMPI, IntelMPI) and system configuration. Some sites supports launching MPI programs directly with schedul-
ing system client srun, but on other ones such applications should be launched with standard mpirun command.
To get a proper process binding to the specific cores is even harder, especially where programs are launched with
mpirun command. To support running MPI applications, QCG-PilotJob Manager implements different execution
models. The detailed description about those models can be found in Execution models section. In following example
we are using the default model, where only single process is started by QCG-PilotJob Manager which is typically
script that calls mpirun or mpiexec command. All the environment for the parallel job, such as hosts file, and
environment variables are prepared by QCG-PilotJob Manager. For example to run Quantum Espresso application,
the example program may look like this:

from qcg.pilotjob.api.manager import LocalManager
from qcg.pilotjob.api.job import Jobs

manager = LocalManager()

jobs = Jobs().add(
name='qe-example',
exec='mpirun',
args=['pw.x'],
stdin='pw.benzene.scf.in',
stdout='pw.benzene.scf.out',
modules=['espresso/5.3.0', 'mkl', 'impi', 'mpich'],

(continues on next page)

15

QCG-PilotJob

(continued from previous page)

numCores=8)

job_ids = manager.submit(jobs)
manager.wait4(job_ids)

manager.finish()

As we can see in the example, we run a single program mpirun which is responsible for setup a proper, parallel
environment for the destination program and spawn the Quantum Espresso executables (pw.x).

In the example program we used some additional options of Jobs.add method:

• stdin - points to the file that content should be sent to job’s standard input

• modules - environment modules that should be loaded before job start

• numCores - how much cores should be allocated for the job

The JSON job description file for the same example is presented below:

[
{
"request": "submit",
"jobs": [

{
"name": "qe-example",
"execution": {
"exec": "mpirun",
"args": ["pw.x"],
"stdin": "pw.benzene.scf.in",
"stdout": "pw.benzene.scf.out",
"modules": ["espresso/5.3.0", "mkl", "impi", "mpich"]

},
"resources": {
"numCores": { "exact": 8 }

}
}

]
},
{
"request": "control",
"command": "finishAfterAllTasksDone"

}
]

5.2 OpenMP

For OpenMP programs (shared memory parallel model), where there is one process that spawns many threads on the
same node, we need to use special option model with threads value. To test execution of OpenMP program we
need to compile a sample application:

$ wget https://computing.llnl.gov/tutorials/openMP/samples/C/omp_hello.c
$ gcc -Wall -fopenmp -o omp_hello omp_hello.c

Now we can launch this application with QCG-PilotJob Manager:

16 Chapter 5. Parallelism

QCG-PilotJob

from qcg.pilotjob.api.manager import LocalManager
from qcg.pilotjob.api.job import Jobs

manager = LocalManager()

jobs = Jobs().add(
name='openmp-example',
exec='omp_hello',
stdout='omp.out',
model='threads',
numCores=8,
numNodes=1)

job_ids = manager.submit(jobs)
manager.wait4(job_ids)

manager.finish()

The omp.out file should contain eight lines with Hello world from thread =. It is worth to remember, that OpenMP
applications can operate only on single node, so adding numNodes=1 might be necessary in case where there are
more than single node in available resources.

The equivalent JSON job description file for given example is presented below:

[
{
"request": "submit",
"jobs": [

{
"name": "openmp-example",
"execution": {
"exec": "omp_hello",
"stdout": "omp.ou",
"model": "threads"

},
"resources": {
"numCores": { "exact": 8 },
"numNodes": { "exact": 1 }

}
}

]
},
{
"request": "control",
"command": "finishAfterAllTasksDone"

}
]

5.2. OpenMP 17

QCG-PilotJob

18 Chapter 5. Parallelism

CHAPTER 6

QCG-PilotJob Manager options

The list of all options can be obtained by running either the wrapper command:

$ qcg-pm-service --help

or directly call the Python module:

$ python -m qcg.pilotjob.service –help

Those options can be passed to QCG-PilotJob Manager in batch mode as command line arguments, or as an argument
server_args during instantiating the LocalManager class.

The full list of currently supported options is presented below.

$ qcg-pm-service --help
usage: service.py [-h] [--net] [--net-port NET_PORT]

[--net-pub-port NET_PUB_PORT] [--net-port-min
→˓NET_PORT_MIN]

[--net-port-max NET_PORT_MAX] [--file]
[--file-path FILE_PATH] [--wd WD] [--envschema

→˓ENVSCHEMA]
[--resources RESOURCES] [--report-format

→˓REPORT_FORMAT]
[--report-file REPORT_FILE] [--nodes NODES]
[--log {critical,error,warning,info,debug,

→˓notset}]
[--system-core] [--disable-nl] [--show-

→˓progress]
[--governor] [--parent PARENT] [--id ID] [--

→˓tags TAGS]
[--slurm-partition-nodes SLURM_PARTITION_NODES]
[--slurm-limit-nodes-range-begin SLURM_LIMIT_

→˓NODES_RANGE_BEGIN]
[--slurm-limit-nodes-range-end SLURM_LIMIT_

→˓NODES_RANGE_END]
[--slurm-resources-file SLURM_RESOURCES_FILE]

(continues on next page)

19

QCG-PilotJob

(continued from previous page)

[--resume RESUME] [--enable-proc-stats] [--
→˓enable-rt-stats]

[--wrapper-rt-stats WRAPPER_RT_STATS]
[--nl-init-timeout NL_INIT_TIMEOUT]
[--nl-ready-treshold NL_READY_TRESHOLD] [--

→˓disable-pub]
[--nl-start-method NL_START_METHOD]

optional arguments:
-h, --help show this help message and exit
--net enable network interface
--net-port NET_PORT port to listen for network interface (implies --net)
--net-pub-port NET_PUB_PORT

port to publish events (implies -
→˓-net)

--net-port-min NET_PORT_MIN
minimum port range to listen for

→˓network interface if
exact port number is not defined

→˓(implies --net)
--net-port-max NET_PORT_MAX

maximum port range to listen for
→˓network interface if

exact port number is not defined
→˓(implies --net)

--file enable file interface
--file-path FILE_PATH

path to the request file
→˓(implies --file)

--wd WD working directory for the service
--envschema ENVSCHEMA

job environment schema
→˓[auto|slurm]

--resources RESOURCES
source of information about

→˓available resources
[auto|slurm|local] as well as a

→˓method of job
execution (through local

→˓processes or as a Slurm sub
jobs)

--report-format REPORT_FORMAT
format of job report file

→˓[text|json]
--report-file REPORT_FILE

name of the job report file
--nodes NODES configuration of available resources (implies

--resources local)
--log {critical,error,warning,info,debug,notset}

log level
--system-core reserve one of the core for the QCG-PJM
--disable-nl disable custom launching method
--show-progress print information about executing tasks
--governor run manager in the governor mode, where jobs will be

scheduled to execute to the
→˓dependant managers

--parent PARENT address of the parent manager, current instance will
(continues on next page)

20 Chapter 6. QCG-PilotJob Manager options

QCG-PilotJob

(continued from previous page)

receive jobs from the parent
→˓manaqger

--id ID optional manager instance identifier - will be
generated automatically when not

→˓defined
--tags TAGS optional manager instance tags separated by commas
--slurm-partition-nodes SLURM_PARTITION_NODES

split Slurm allocation by given
→˓number of nodes, where

each group will be controlled by
→˓separate manager

(implies --governor)
--slurm-limit-nodes-range-begin SLURM_LIMIT_NODES_RANGE_BEGIN

limit Slurm allocation to
→˓specified range of nodes

(starting node)
--slurm-limit-nodes-range-end SLURM_LIMIT_NODES_RANGE_END

limit Slurm allocation to
→˓specified range of nodes

(ending node)
--slurm-resources-file SLURM_RESOURCES_FILE

path to the file with slurm
→˓resources description

--resume RESUME path to the QCG-PilotJob working directory to resume
--enable-proc-stats gather information about launched processes from

system
--enable-rt-stats gather exact start & stop information of launched

processes
--wrapper-rt-stats WRAPPER_RT_STATS

exact start & stop information
→˓wrapper path

--nl-init-timeout NL_INIT_TIMEOUT
node launcher init timeout (s)

--nl-ready-treshold NL_READY_TRESHOLD
percent (0.0-1.0) of node

→˓launchers registered when
computations should start

--disable-pub disable status publisher interface
--nl-start-method NL_START_METHOD

method to start node launchers
→˓(ssh,slurm - default)

21

QCG-PilotJob

22 Chapter 6. QCG-PilotJob Manager options

CHAPTER 7

Key concepts

7.1 Modules

QCG-PilotJob Manager consists of the following internal functional modules:

• Queue - the queue containing jobs waiting for resources,

• Scheduler algorithm - the algorithm selecting jobs and assigning resources to them.

• Registry - the permanent registry containing information about all (current and historical) jobs in the system,

• Executor - a module responsible for execution of jobs for which resources were assigned.

7.2 Queue & scheduler

All the jobs submitted to the QCG-PilotJob Manger system are placed in the queue in the order of they arrival. The
scheduling algorithm of QCG-PilotJob Manager works on that queue. The goal of the Scheduler is to determine the
order of execution and amount of resources assigned to individual jobs to maximise the throughput of the system. The
algorithm is based on the following set of rules:

• Jobs being in the queue are processed in the FIFO manner,

• For every feasible (ready for execution) job the maximum (possible) amount of requested resources is deter-
mined. If the amount of allocated resources is greater than the minimal requirements requested by the user, the
resources are exclusively assigned to the job and the job is removed from the queue to be executed.

• If the minimal resource requirements are greater than total available resources the job is removed from the queue
with the FAILED status.

• If the amount of resources doesn’t allow to start the job, it stays in the queue with the QUEUED status to be taken
into consideration again in the next scheduling iteration,

• Jobs waiting for successful finish of any other job, are not taken into consideration and stay in the queue with
the QUEUED state,

23

QCG-PilotJob

• Jobs for which dependency constraints can not be met, due to failure or cancellation of at least one job which
they depend on, are marked as OMITTED and removed from the queue,

• If the algorithm finishes processing the given job and some resources still remain unassigned the whole proce-
dure is repeated for the next job.

7.3 Executors

QCG-PilotJob Manager module named Executor is responsible for execution and control of jobs by interacting with
the cluster resource management system. The current implementation contains three different methods of executing
jobs:

• as a local process - this method is used when QCG-PilotJob Manager either has been run outside a Slurm
allocation or when parameter --resources local has been defined,

• through internal distributed launcher service - currently used only in Slurm allocation for single core jobs,

• as a Slurm sub job - the job is submitted to the Slurm to be run in current allocation on scheduled resources.

The modular approach allows for relatively easy integration also with other queuing systems. The QCG-PilotJob
Manager and all jobs controlled by it are executed in a single allocation. To hide this fact from the individual job
and to give it an impression that it is executed directly by the queuing system QCG-PilotJob overrides some of the
environment settings. More on this topic is available in Execution environments

24 Chapter 7. Key concepts

CHAPTER 8

Execution environments

In order to give an impression that an individual QCG-PilotJob task is executed directly by the queuing system a set of
environment variables, typically set by the queuing system, is overwritten and passed to the job. These variables give
the application all typical information about a job it can be interested in, e.g. the amount of assigned resources. In
case of parallel application an appropriate machine file is created with a list of resources for each task. Additionally to
unify the execution regardless of the queuing system a set of variables independent from a queuing system is defined
and passed to tasks.

8.1 Slurm execution environment

For the SLURM scheduling system, an execution environment for a single job contains the following set of variables:

• SLURM_NNODES - a number of nodes

• SLURM_NODELIST - a list of nodes separated by the comma

• SLURM_NPROCS - a number of cores

• SLURM_NTASKS - see SLURM_NPROCS

• SLURM_JOB_NODELIST - see SLURM_NODELIST

• SLURM_JOB_NUM_NODES - see SLURM_NNODES

• SLURM_STEP_NODELIST - see SLURM_NODELIST

• SLURM_STEP_NUM_NODES - see SLURM_NNODES

• SLURM_STEP_NUM_TASKS - see SLURM_NPROCS

• SLURM_NTASKS_PER_NODE - a number of cores on every node listed in SLURM_NODELIST separated by
the comma,

• SLURM_STEP_TASKS_PER_NODE - see SLURM_NTASKS_PER_NODE

• SLURM_TASKS_PER_NODE - see SLURM_NTASKS_PER_NODE

25

QCG-PilotJob

8.2 QCG Execution environment

To unify the execution environment regardless of the queuing system the following variables are set:

• QCG_PM_NNODES - a number of nodes

• QCG_PM_NODELIST- a list of nodes separated by the comma

• QCG_PM_NPROCS - a number of cores

• QCG_PM_NTASKS - see QCG_PM_NPROCS

• QCG_PM_STEP_ID - a unique identifier of a job (generated by QCG-PilotJob Manager)

• QCG_PM_TASKS_PER_NODE - a number of cores on every node listed in QCG_PM_NODELIST separated by
the comma

• QCG_PM_ZMQ_ADDRESS - an address of the network interface of QCG-PilotJob Manager (if enabled)

26 Chapter 8. Execution environments

CHAPTER 9

Execution models

The QCG-PJM service manages individual cores, so it assigns specific cores to the tasks. From the performance
perspective, binding tasks to the cores is more efficient as it separates tasks from each other.

Note: To support CPU binding, the service must have information about physical available cores in the system. This
information is provided by SLURM in a created allocation, but it is not available in case of logical resources, i.e. where
user defines virtual cores and nodes. So currently the binding is supported only when the QCG-PJM service is run
inside a SLURM allocation.

The binding of single core tasks is achieved with:

• Custom Launching Agent, that uses taskset command,

• SLURM built-in mechanism based on --cpu-bind option of the srun command.

Currently, the parallel tasks that require more than one core are launched only by the srun or mpirun commands.
The mask_cpu flag of the srun’s `--cpu-bind parameter will contain the CPU masks for all allocated nodes sep-
arated with the comma. When mpirun command is used to launch parallel task, either the --rankfile parameter
is used for OpenMPI model or I_MPI_PIN_PROCESSOR_LIST environment variable for Intel MPI model.

Additionally, for all tasks launched by the Slurm with binding supported, the QCG_PM_CPU_SET environment
variable will be available and set with core identifiers separated with comma.

To support process affinity for different parallel applications, QCG-PJM supports different execution models. Cur-
rently the following models are available:

• default - in this model only a single process is launched within the allocation, which is prepared based
on task’s resource requirements, the allocation description can be found in environment variables, such as: -
SLURM_NODELIST - list of allocated nodes separated by comma character - SLURM_NTASKS - total number
of cores - SLURM_TASKS_PER_NODE - number of allocated cores on following nodes, where each element
can be in a form NODE_NAME (a single core on a node) or NODE_NAME(xNUM_OF_CORES) (many cores on a
single node) - QCG_PM_CPU_SET - list of core identifiers on following nodes separated by a comma character

• threads - is designed for running OpenMP tasks on a single node, the process is started with the srun
command with the --cpus-per-task parameter set according to a number of cores defined in resource
requirements

27

QCG-PilotJob

• openmpi - the processes are started with the mpirun command with rankfile created based on task’s resource
requirements

• intelmpi - the processes are started with the mpirun command (from the IntelMPI distribution) with de-
fined multiple components, where each component describing execution node, contains -host element and
I_MPI_PIN_PROCESSOR_LIST arguments set according to the allocated resources

• srunmpi - the processes are started with the srun command with --cpu-bind parameter set according to
the allocated resources; this model should be used only on sites that have penMPI/IntelMPI/Slurm environments
configured properly.

The openmpi and srunmpi provide additional configuration options that that can be defined in the element
model_opts. Currently the following options are supported:

• mpirun (str) - path to the mpirun command that should be used to launch applications, if not defined the default
command (should be in the PATH environment variable) is used

• mpirun_args (list) - additional arguments that should be passed to the mpirun command

We recommend usage of srunmpi model for MPI applications on HPC sites wherever srun is properly configured to
execute MPI codes.

Note: It is important to define for the intelmpi, srunmpi and openmpi models appropriate IntelMPI/OpenMPI
modules in executable/modules element of the job description or to load them before staring QCG-PJM.

9.1 Examples

1) To use different MPI implementation applications in a single workflow we can define appropriate options

[
{
"request": "submit",
"jobs": [

{
"name": "intelmpi_task",
"execution": {
"exec": "/home/user/my_intelmpi_application",
"model": "intelmpi",
"model_opts": {

"mpirun": "/opt/exp_soft/local/skylake/intel/compilers_and_libraries_
→˓2020.4.304/linux/mpi/intel64/bin/mpirun"

},
"modules": ["impi"]

},
"resources": {
"numCores": {
"exact": 8

}
}

},
{

"name": "openmpi_task",
"execution": {
"exec": "/home/user/my_openmpi_application",
"model": "openmpi",

(continues on next page)

28 Chapter 9. Execution models

QCG-PilotJob

(continued from previous page)

"model_opts": {
"mpirun": "/opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/bin/mpirun",
"mpirun_args": ["--mca", "rmaps_rank_file_physical", "1"]

},
"modules": ["openmpi/4.1.0_gcc620"]

},
"resources": {
"numCores": {
"exact": 8

}
}

}
]

}
]

With this input, QCG-PilotJob service will launch task’s intelmpi_task application /home/user/
my_intelmpi_applicationwith the mpirun command path /opt/exp_soft/local/skylake/intel/
compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpirun and additionally it
will load impi module. The second task’s openmpi_task application /home/user/my_openmpi_application
will be launched with the command /opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/bin/
mpirun with additional arguments --mca rmaps_rank_file_physical 1 and the module openmpi/4.
1.0_gcc620 loaded before the application’s start.

The description for the API looks similar:

jobs = Jobs()
jobs.add(name = 'intelmpi_task', exec = '/home/user/my_intelmpi_application',
→˓numCores = { 'exact': 4 }, model = 'intelmpi', model_opts = { 'mpirun': '/opt/exp_
→˓soft/local/skylake/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/
→˓mpirun' }, modules = ['impi'])
jobs.add(name = 'openmpi_task', exec = '/home/user/my_openmpi_application', numCores
→˓= { 'exact': 4 }, model = 'openmpi', model_opts = { 'mpirun': '/opt/exp_soft/local/
→˓skylake/openmpi/4.1.0_gcc620/bin/mpirun', 'mpirun_args': ['--mca', 'rmaps_rank_file_
→˓physical', '1']}, modules = ['openmpi/4.1.0_gcc620'])

2) Instead of compiled application, it is possible to use Bash script from which the application is called later. It
gives us more possibilities to configure the environment for the application. For example using the following
input description:

[
{
"request": "submit",
"jobs": [

{
"name": "openmpi_task",
"execution": {
"exec": "bash",
"args": ["-l", "./app_script.sh"],
"model": "openmpi",

},
"resources": {
"numCores": {

"exact": 8
}

}

(continues on next page)

9.1. Examples 29

QCG-PilotJob

(continued from previous page)

}
]

}
]

The script app_script.sh could look like the following:

#!/bin/bash

module load openmpi/4.1.0_gcc620
/home/user/my_openmpi_application

Warning: It is important to remember, that for the parallel task with a model different that default, there will be
as many instances created of the script as the required number of cores. Thus the actions that should be executed
only once per all application’s processes should be enclosed in the following block:

if ["x$OMPI_COMM_WORLD_RANK" == "x0"] || ["x$PMI_RANK" == "x0"]; then
actions in this block will be executed only for rank 0 of OpenMPI/IntelMPI

→˓applications
endif

30 Chapter 9. Execution models

CHAPTER 10

File based interface

The File interface allows a static sequence of commands (called requests) to be read from a file a nd performed by the
system.

10.1 File interface usage

To use QCG-PilotJob Manager with the File interface we should call either the wrapper command:

$ qcg-pm-service

or directly call the Python module:

$ python -m qcg.pilotjob.service

with the --file-path FILE_PATH parameter, where FILE_PATH is a path to the requests file. For example, the
command:

$ qcg-pm-service --file-path reqs.json

will run QCG-PilotJob Manager on requests written in reqs.json file.

10.2 Requests file

The requests file is a JSON format file containing a sequence of commands (requests). The file must be staged into the
working directory of the QCG-PilotJob Manager job and passed as an argument of this job invocation. The requests
are read in an order they are placed in the file. In the file mode, QCG-PilotJob Manager outputs all responses to the
log file.

31

QCG-PilotJob

10.3 Commands

The request is a JSON dictionary with the request key containing a request command. The additional data format
depends on a specific request command. The following commands are currently supported.

10.3.1 submit

Submit a list of jobs to be processed by the system. The jobs key must contain a list of formalised descriptions of
jobs.

The Job description is a dictionary with the following keys:

• name (required) String - job name, must be unique among all other submitted jobs

• iteration (optional) Dict - defines a loop for iterative jobs, the either start (optional) and stop or values
keys must be defined; the total number of iterations will be stop - start (the last index of the sub-job will be stop
- 1) in case of boundary definition or lenght of values array

• execution (required) Dict - execution description with the following keys:

– exec (optional) String - executable name (if available in $PATH) or absolute path to the executable,

– args (optional) Array of String - list of arguments that will be passed to the executable,

– script (optional) String - commands for bash environment, mutually exclusive with exec and args

– env (optional) Dict (String: String) - environment variables that will be appended to the ex-
ecution environment,

– wd (optional) String - a working directory, if not defined the working directory (current directory) of
QCG-PilotJob Manager will be used. If the path is not absolute it is relative to the QCG-PilotJob Manager
working directory. If the directory pointed by the path does not exist, it is created before the job starts.

– stdin, stdout, stderr (optional) String - path to the standard input , standard output and standard
error files respectively.

– modules (optional) Array of String - the list of environment modules that should be loaded before
start of the job

– venv (optional) String - the path to the virtual environment inside in job should be started

– model (optional) String - the model of execution, currently following values are supported:

* threads - job’s iteration is launched with srun command on a single node with as many cpus per
task as declared in resources element

* intelmpi - job’s iteration is launched with mpirun command (or command defined in element
model_opts/mpirun) with the IntelMPI set of arguments, additional arguments for mpirun com-
mand can be declared in element model_opts/mpirun_args

* openmpi - job’s iteration is launched with mpirun command (or command defined in element
model_opts/mpirun) with the OpenMPI set of arguments, additional arguments for mpirun com-
mand can be declared in element model_opts/mpirun_args

* srunmpi - job’s iteration is launched with srun command on as many number of nodes and cores as
declared in resources element

* default - job’s iteration is launched as a single process with environment variable
QCG_PM_CPU_SET containing allocated cores on a set of declared nodes, the allocated nodes can
be obtained from QCG_PM_NODELIST environment variables

32 Chapter 10. File based interface

QCG-PilotJob

– model_opts (optional) Dict - the additional arguments used in some of the models, currently the
following keys are supported

* mpirun (optional) String - the path to the command to be used in srunmpi and openmpi
models

* mpirun_args (optional) Array of String - the additional arguments that should be passed to
the mpirun command in srunmpi and openmpi models

• resources (optional) Dict - resource requirements, a dictionary with the following keys:

– numCores (optional) Dict - number of cores,

– numNodes (optional) Dict- number of nodes,

The specification of numCores/numNodes elements may contain the following keys:

* exact (optional) Number - the exact number of cores,

* min (optional) Number - minimal number of cores,

* max (optional) Number - maximal number of cores,

* scheduler (optional) Dict - the type of resource iteration scheduler, the key name specify type
of scheduler and currently the maximum-iters and split-into names are supported, the optional params
dictionary specifies the scheduler parameters (the exact and min / max are mutually exclusive).

If resources is not defined, the numCores with exact set to 1 is taken as the default value.

The numCores element without numNodes specifies requested number of cores on any number of nodes.
The same element used along with the numNodes determines the number of cores on each requested node.

The scheduler optional key defines the iteration resources scheduler. It is futher described in section
Iteration resources schedulers.

• dependencies (optional) Dict - a dictionary with the following items:

– after (required) Array of String - list of names of jobs that must finish before the job can be
executed. Only when all listed jobs finish (with SUCCESS status) the current job is taken into consideration
by the scheduler and can be executed.

The job description may contain variables (except the job name, which cannot contain any variable or special character)
in the format:

${ variable-name }

which are replaced with appropriate values by QCG-PilotJob Manager.

The following set of variables is supported during a request validation:

• rcnt - a request counter that is incremented with every request (for iterative sub-jobs the value of this variable
is the same)

• uniq - a unique identifier of each request (each iterative sub-job has its own unique identifier)

• sname - a local cluster name

• date - a date when the request was received

• time - a time when the request was received

• dateTime - date and time when the request was received

• it - an index of a current sub-job (only for iterative jobs)

• jname - a final job name after substitution of all other used variables to their values

10.3. Commands 33

QCG-PilotJob

The following variables are handled when resources has been already allocated and before the start of job execution:

• root_wd - a working directory of QCG-PilotJob Manager, the parent directory for all relative job’s working
directories

• ncores - a number of allocated cores for the job

• nnodes - a number of allocated nodes for the job

• nlist - a list of nodes allocated for the job separated by the comma

The sample submit job request is presented below:

{
"request": "submit",
"jobs": [
{

"name": "msleep2",
"execution": {
"exec": "/bin/sleep",
"args": [
"5s"

],
"env": {},
"wd": "sleep.sandbox",
"stdout": "sleep2.${ncores}.${nnodes}.stdout",
"stderr": "sleep2.${ncores}.${nnodes}.stderr"

},
"resources": {
"numCores": {
"exact": 2

}
}

}
]

}

The example response is presented below:

{
"code": 0,
"message": "1 jobs submitted",
"data": {
"submitted": 1,
"jobs": [

"msleep2"
]

}
}

10.3.2 listJobs

Return a list of registered jobs. No additional arguments are needed. The example list jobs request is presented below:

{
"request": "listJobs"

}

The example response is presented below:

34 Chapter 10. File based interface

QCG-PilotJob

{
"code": 0,
"data": {
"length": 1,
"jobs": {

"msleep2": {
"status": "QUEUED",
"inQueue": 0

}
}

}
}

10.3.3 jobStatus

Report current status of a given jobs. The jobNames key must contain a list of job names for which status should be
reported. A single job may be in one of the following states:

• QUEUED - a job was submitted but there are no enough available resources

• EXECUTING - a job is currently executed

• SUCCEED - a finished with 0 exit code

• FAILED - a job could not be started (for example there is no executable) or a job finished with non-zero exit
code or a requested amount of resources exceeds a total amount of resources,

• CANCELED - a job has been cancelled either by a user or by a system

• OMITTED - a job will never be executed due to the dependencies (a job which this job depends on failed or was
cancelled).

The example job status request is presented below:

{
"request": "jobStatus",
"jobNames": ["msleep2"]

}

The example response is presented below:

{
"code": 0,
"data": {

"jobs": {
"msleep2": {
"status": 0,
"data": {

"jobName": "msleep2",
"status": "SUCCEED"

}
}

}
}

}

The status key at the top, job’s level contains numeric code that represents the operation return code - 0 means
success, where other values means problem with obtaining job’s status (e.g. due to the missing job name).

10.3. Commands 35

QCG-PilotJob

10.3.4 jobInfo

Report detailed information about jobs. The jobNames key must contain a list of job names for which information
should be reported.

The example job status request is presented below:

{
"request": "jobInfo",
"jobNames": ["msleep2", "echo"]

}

The example response is presented below:

{
"code": 0,
"data": {
"jobs": {

"msleep2": {
"status": 0,
"data": {
"jobName": "msleep2",
"status": "SUCCEED",
"runtime": {
"allocation": "LAPTOP-CNT0BD0F[0:1]",
"wd": "/sleep.sandbox",
"rtime": "0:00:02.027212",
"exit_code": "0"

},
"history": "\n2020-06-08 12:56:06.789757: QUEUED\n2020-06-08 12:56:06.

→˓789937: SCHEDULED\n2020-06-08 12:56:06.791251: EXECUTING\n2020-06-08 12:56:08.
→˓826721: SUCCEED"

}
}

}
}

}

10.3.5 control

Controls behaviour of QCG-PilotJob Manager. The specific command must be placed in the‘‘command‘‘ key. Cur-
rently the following commands are supported: - finishAfterAllTasksDone This command tells QCG-PilotJob
Manager to wait until all submitted jobs finish.

By default, in the file mode, the QCG-PilotJob Manager application finishes as soon as all requests are
read from the request file.

The sample control command request is presented below:

{
"request": "control",
"command": "finishAfterAllTasksDone"

}

36 Chapter 10. File based interface

QCG-PilotJob

10.3.6 cancelJob

Cancel a jobs with a list of their names specified in the jobNames key. Currently this operation is not supported.

10.3.7 removeJob

Remove a jobs from the registry. The list of names of a jobs to be removed must be placed in the jobNames key.
This request can be used in case when there is a need to submit another job with the same name - because all the job
names must be unique a new job cannot be submitted with the same name unless the previous one is removed from
the registry. The example remove job request is presented below:

{
"request": "removeJob",
"jobNames": ["msleep2"]

}

The example response is presented below:

{
"data": {
"removed": 1

},
"code": 0

}

10.3.8 resourcesInfo

Return current usage of resources. The information about a number of available and used nodes/cores is reported. No
additional arguments are needed. The example resources info request is presented below:

{
"request": "resourcesInfo"

}

The example response is presented below:

{
"data": {
"total_cores": 8,
"total_nodes": 1,
"used_cores": 2,
"free_cores": 6

},
"code": 0

}

10.3.9 finish

Finish the QCG-PilotJob Manager application immediately. The jobs being currently executed are killed. No addi-
tional arguments are needed.

The example finish command request is presented below:

10.3. Commands 37

QCG-PilotJob

{
"request": "finish"

}

38 Chapter 10. File based interface

CHAPTER 11

Executor API

Beta

Executor API is an alternative, simplified programming interface for QCG-PilotJob. In some aspects it mimics an
interface of concurrent.futures.Executor and may therefore be appealing to many Python programmers.
However, since this interface is still under development, it is dedicated mostly for less-demanding use-cases.

Executor API is based on the basic API of QCG-PilotJob and therefore it inherits core elements from that API. On the
other hand, in order to support definition of the common execution scenarios, many elements of basic API have been
hidden behind simplified interface.

11.1 Installation

Executor API can be installed from PyPi, with the following command:

$ pip install qcg-pilotjob-executor-api

11.2 Usage

Before we present more details about the usage of Executor API, let’s outline a minimal working example:

1 from qcg.pilotjob.executor_api.qcgpj_executor import QCGPJExecutor
2 from qcg.pilotjob.executor_api.templates.basic_template import BasicTemplate
3

4 with QCGPJExecutor() as e:
5 f = e.submit(BasicTemplate.template, name='tj', exec='date')
6 f.result()

This example shows how Executor API can be used to run specific command, here date, within a QCG-PilotJob task.

39

QCG-PilotJob

The interesting part starts on the 4th line. Here we create QCGPJExecutor, which is an entry point to QCG-PilotJob.
Actually, behind the scenes QCGPJExecutor initialises the QCG-PilotJob manager service and it plays a role of a
proxy to its methods.

Once created, QCGPJExecutor allows us to submit tasks for the execution within QCG-PilotJob. An example
invocation of the submit method is shown on the 5th line. The first and the most interesting argument to this method
is template. The template is actually a Callable that returns a tuple consisting of string and dictionary. The string need
to be a QCG-PilotJob submit request description written in a JSON format with optional placeholders for substitution
of specific parameters, while the dictionary may be used to set default values for placeholders. The next parameters
of the method are optional and dependent on the selected template - their role is to provide values for the actual
substitution of placeholders.

In the example above we use a predefined template called BasicTemplate.template, which requires only two
parameters to be provided, namely name and exec.

The submit method returns a QCGPJFuture object, which provides methods associated with the execution of
submission. For instance, the invocation f.result() in the example above, blocks processing until the task is not
completed and then returns the status of its execution.

11.2.1 QCGPJExecutor

QCGPJExecutor is an approximate implementation of the concurrent.futures.Executor interface, but
instead of execution of functions using threads or multiprocessing module like it takes place in case of python build-in
executors, here we execute QCG-PilotJob’s tasks.

Technically, QCGPJExecutor is a kind of proxy over the QCG-PilotJob manager and at the expense of some flex-
ibility of the covered service, it provides simpler interface. QCGPJExecutor’s constructor can be invoked without
any parameters and then it is started with default settings.

However, in order to enable easy configuration of the commonly changed settings, several optional parameters are
provided. One of such parameters is resources which may be useful for testing QCG-PilotJob on a local laptop.

QCGPJExecutor implements ContextManager’s methods that allow for its easy usage with the with statements.
When the with statement is used, python will automatically take care of releasing QCGPJExecutor’s resources.

When the QCGPJExecutor is constructed outside the with statement, it needs to be released manually, using the
shutdown method.

For the full reference of the QCGPJExecutor module see qcg.pilotjob.executor_api.
qcgpj_executor.

11.2.2 Submission of tasks

The key method offered by QCGPJExecutor is submit. The call of this method adds a new task (or tasks, depending
on the usage scenario) to the QCG-PilotJob’s queue to be executed once resources are available and dependencies
satisfied. The method takes the following arguments:

1. fn : a callable that returns a tuple representing a template. The first element of the tuple should be a string con-
taining a QCG-PilotJob submit request expressed in a JSON format compatible with the QCG-PilotJob’s
interface. The string can include placeholders (identifiers preceded by $ symbol) that are the target for
substitution. The second element of a tuple is dictionary which may be used to assign default values for
substitution of selected placeholders.

2. *args : a set of dicts which contain parameters that will be used to substitute placeholders defined in the
template.

3. **kwargs : a set of keyword arguments that will be used to substitute placeholders defined in the template.

40 Chapter 11. Executor API

QCG-PilotJob

Note: In the process of substitution **kwargs overwrite *args and *args overwrite defaults

11.2.3 Example template

In order to understand how to use or create templates, possibly the best option is to look at the example.
BasicTemplate class, which is delivered with the QCG-PilotJob Executor API, provides a predefined template
method that was already used in the example above. It is a simple example, but can give a good overview.

1 class BasicTemplate(QCGPJTemplate):
2 @staticmethod
3 def template() -> Tuple[str, Dict[str, Any]]:
4 template = """
5 {
6 'name': '${name}',
7 'execution': {
8 'exec': '${exec}',
9 'args': ${args},

10 'stdout': '${stdout}',
11 'stderr': '${stderr}'
12 }
13 }
14 """
15

16 defaults = {
17 'args': [],
18 'stdout': 'stdout',
19 'stderr': 'stderr'
20 }
21

22 return template, defaults

Here, accordingly with the expectations, the function returns template and defaults. The template is a
JSON dictionary representing a QCG-PilotJob submit request. What is important, it includes a set of ${} placehold-
ers. These placeholders may be substituted by the parameters provided to the submit method. For some of the
placeholders, default values are already predefined in a defaults dictionary, and these parameters don’t need to be
substituted if there is no concrete reason for this. The rest of placeholders, namely {name} and {exec}, don’t have
default values and therefore they need to be substituted by parameters provided to the submit.

Let’s see how example invocations of the submit method for this template can look like:

e.submit(BasicTemplate.template, name='tj', exec='date')
e.submit(BasicTemplate.template, name='tj', exec='sleep', args=['10'])

11.2.4 QCGPJFuture

The submit method returns QCGPJFuture object, which plays a role of a handler for the submission. Thus, using
the returned QCGPJFuture object it is possible to make queries to check if the submitted task has been finished, with
the done method, or request the cancellation of an execution with the cancel method. As it was presented in the
attached example, it is also possible to invoke blocking wait until the task is finished with the resultmethod. For the
full reference of methods provided by QCGPJFuture see qcg.pilotjob.executor_api.qcgpj_future.

11.2. Usage 41

QCG-PilotJob

42 Chapter 11. Executor API

CHAPTER 12

Iteration resources schedulers

The aim of iteration resources schedulers is to optimise resources usage for iterative tasks. To this end, the schedulers
assign an exact number of resources based on single iteration resource requirements described as minimum number
of resources and number of available resources in allocation. What is important, the job’s resource requirements
for iterative tasks do not have to be changed for different allocations. The resource requirements can apply to both:
number of cores and number of nodes specifications.

Currently, two schedulers are implemented:

• maximum-iters

• split-into

12.1 maximum-iters

The iteration resource scheduler for maximizing resource usage. The maximum-iters iteration resource scheduler
is trying to launch as many iterations in the same time on all available resources. In case where number of iterations
exceeds the number of available resources, the maximum-iters schedulers splits iterations into steps minimizing
this number, and allocates as many resources as possible for each iteration inside step. The max attribute of resource
specification is not allowed when maximum-iters scheduler is used.

12.2 split-into

The iteration resource scheduler for partitioning available resources. This simple iteration resource scheduler splits all
available resources into given partitions, and each iteration will be executed inside whole single partition.

43

QCG-PilotJob

44 Chapter 12. Iteration resources schedulers

CHAPTER 13

Resuming prematurely interrupted computations

13.1 General

The QCG-PilotJob Manager service implements mechanism for resuming prematurely interrupted computations. All
incoming job submission requests, as well as the finished job iterations are recorded to allow resuming job execution.
The current state is placed in files track.* in auxiliary directory (the .qcgpjm-service-* in the working
directory). It is worth to mention that started, but not finished job iterations will be started again, so if they don’t
implement automatic computation checkpointing, they will re-start from begin.

13.2 Invocation

To resume the QCG-PilotJob Manager with previous jobs, the resume command line option must be used with path
either direct to the auxiliary QCG-PilotJob Manager directory or to the working directory where auxiliary directory
is placed (in case where there are many auxiliary directories in the working directory, the last modified one will be
automatically selected).

Note: Currently during the resume operation, non of previously used command line option will be re-used. So if for
example the working directory has been specified in original QCG PilotJob Manager start, the same working directory
should be used during resuming.

Example invocation:

qcg-pm-service --wd prev_work_dir --resume prev_work_dir/.qcgpjm-service-LAPTOP-
→˓CNT0BD0F.5091

45

QCG-PilotJob

13.3 Operation

After resume, the QCG-PilotJob Manager will re-use the pointed auxiliary directory, so all log files, current tracking
status and job reports will be appended to the previous files. Thus there is no problem to resume, already resumed
computations.

13.4 Issues

Currently the resume mechanism is not supported in resource partitioning mode.

46 Chapter 13. Resuming prematurely interrupted computations

CHAPTER 14

Performance statistics

The QCG-PilotJob service provides tools which, based on service logs, allow you to analyse the efficiency of resource
use. Please note that the current implementation is the first version of these tools and may not be free from errors.

14.1 Performance measurements and data collection

Due to the potential load on the QCG-PilotJob service and its asynchronous nature, in order to accurately measure
its performance it is necessary to use external metrics to determine when a particular job started and ended. In order
to generate such metrics, a wrapper program was created in the C language. The role of this program is to register
the moment when the application indicated by the arguments started, and to register the moment when it ended. The
collected data is sent through a named pipe (data sent through such a communication channel is not stored in the file
system, so the file system performance does not affect the efficiency of communication) to the QCG-PilotJob service
agent running on the local compute node. When all calculations are completed, the collected data are written to the
QCG-PilotJob service logs.

Note that currently all parallel tasks (requiring more than one core) are started using the “srun” command (provided by
the Slurm queue system). Therefore, the wrapper used with the “srun” command will register the moment the “srun”
command itself is run, and not the target processes of the parallel application. Therefore, please note that the metrics
and analysis presented here do not take into account the latency of the queueing system itself

14.1.1 Wrapper installation

As the wrapper itself is written in C, it requires compilation on the target computing cluster.

Source code (qcg_pj_launch_wrapper.c) can be downloaded from the develop branch of QCG-PilotJob
project repository on GitHub, e.g:

$ wget https://raw.githubusercontent.com/vecma-project/QCG-PilotJob/develop/utils/qcg_
→˓pj_launch_wrapper.c

and then compiled using the compiler of your choice:

47

https://github.com/vecma-project/QCG-PilotJob/tree/develop/

QCG-PilotJob

$ gcc -Wall -o qcg_pj_launch_wrapper qcg_pj_launch_wrapper

or

$ icc -Wall -o qcg_pj_launch_wrapper qcg_pj_launch_wrapper

The compiled program should be placed in a path accessible from all compute nodes.

14.1.2 Launch of QCG-PilotJob service with collection of external metrics

In order to collect external metrics related to application execution time, two arguments must be passed when starting
the QCG-PilotJob service:

• --enable-rt-stats - enabling the collection of statistics

• --wrapper-rt-stats - indication of wrapper location (the path to the installed wrapper program)

An example call to the QCG-PilotJob service with the job description placed in a JSON file and the collection of
external metrics looks like this:

$ qcg-pm-service --wd out-dir --file-path mpi_iter_mixed.json --enable-rt-stats --
→˓wrapper-rt-stats /home/piotrk/runtime_wrapper/qcg_pj_launch_wrapper

In this case, all logs and metrics will be in the ‘out-dir’ subdirectory when the calculation is complete.

14.2 Analysis tool - qcg-pm-report

The QCG-PilotJob package provides a qcg-pm-report program to enable performing a number of analyses based on
the data collected by the wrapper and available in a working directory after the QCG-PilotJob’s run. It allows to assess
the performance of the entire workflow, elementary tasks as well as to get information about resources utilisation.

A description of the available commands of qcg-pm-report is given below.

14.2.1 stats

The stats command displays basic metrics about the executed workflow as a whole, such as:

• total jobs, failed jobs - number of running jobs and number of failed jobs

• total cores, total nodes - number of available nodes and total number of available cores on all nodes

• service started, service finished, service runtime - the start and end time of the QCG-
PilotJob service and the difference between these dates; note that the start time of the QCG-PilotJob service
may be slightly delayed with respect to the start time of the job in the Slurm service, as the time reported by
the queue system does not take into account the time associated with loading the Python environment and the
QCG-PilotJob service modules; in practice, however, this difference should not be greater than 1-2 seconds.

• init overhead, finish overhead, total overhead - these are respectively the time markups for
the initiation of the QCG-PilotJob service (the time from the start of the service to the start of the first job within
it), the finish time of the QCG-PilotJob service (the time from the end of the last job within it to the end of the
QCG-PilotJob service) and the sum of the two previously mentioned

• overhead ratio - the ratio of total overhead to service runtime

• overhead core-hours - it is a product of available cores and total overhead value (expressed in
hours)

48 Chapter 14. Performance statistics

QCG-PilotJob

An example of a generated report:

$ qcg-pm-report stats out/intelmpi-mpi-iter-mixed-large-10128902/
total jobs: 2000

failed jobs: 0
total cores: 960
total nodes: 40

service started: 2021-04-14 14:20:08.223523
service finished: 2021-04-14 14:23:21.028799
service runtime: 192.81 secs

init overhead: 4.08 secs
finish overhead: 1.57 secs
total overhead: 5.65 secs
overhead ratio: 2.9

overhead core-hours: 1.51

14.2.2 launch-stats

The launch-stats command is used to generate a report showing delays in launching and recording the completion of
jobs by the QCG-PilotJob service. The following metrics are generated:

• total start overhead - total (for all jobs) time difference between starting the job by the QCG-PilotJob
service and the actual start of the job (information registered by the running wrapper), expressed in seconds

• total finish overhead - total (for all jobs) difference in time between the actual finish of the job (infor-
mation registered by the running wrapper) and the moment when it was registered by the QCG-PilotJob service,
expressed in seconds

• total start and finish overhead - sum of the two previous metrics

• average job start overhead - average delay in starting a single job

• average job finish overhead - average delay in handling the completion of a single job

• average job total overhead - average total delay in starting and handling the completion of a single
job

• average real job run time - average real run time of a single job (determined by metrics sent by
wrapper)

• average qcg job run time - average duration of a single job (determined from the times recorded by
the QCG-PilotJob service)

• average job overhead per runtime - percentage ratio of average job total overhead to
the average real job run time

• generated for total jobs - the number of jobs for which a report was generated, i.e. the number of
all jobs for which metrics were recorded (these were provided by the wrapper

An example of a generated report:

$ qcg-pm-report launch-stats out/intelmpi-mpi-iter-mixed-large-10128902/
total start overhead: 29.2834

total finish overhead: 62.1390
total start and finish overhead: 91.4224

average job start overhead: 0.0146
average job finish overhead: 0.0311
average job total overhead: 0.0457

average real job run time: 16.5664

(continues on next page)

14.2. Analysis tool - qcg-pm-report 49

QCG-PilotJob

(continued from previous page)

average qcg job run time: 16.6121
average job overhead per runtime (%): 0.29

generated for total jobs: 2000

14.2.3 gantt

The gantt command is used to generate a timeline plot with the start and end of each task running on the allocated
resources marked. This plot shows an overall view of the scheduling plan. In order to generate the plot, as an additional
argument, in addition to the path to the working directory of the task, the name of the target file where the plot should
be saved should be given. Supported files include: pdf, png, jpeg. Note - the time to generate the graph depends on
the number of resources, the number of tasks and the duration of the entire workflow, and for larger scenarios can be a
time-consuming operation. In case of a scenario running 2000 tasks on 960 cores and 40 nodes, the graph generation
may take up to 3 minutes.

Example of chart generation:

$ qcg-pm-report gantt out/intelmpi-mpi-iter-mixed-10128873/ gantt.pdf

A sample chart generated:

50 Chapter 14. Performance statistics

QCG-PilotJob

14.2.4 gantt-gaps

The gantt-gaps command is used to generate a timeline plot with marked moments when resources were not
used. This plot is in a way the negative of the plot generated by the “gantt” command. As an additional argument,
in addition to the path to the working directory of the task, you should give the name of the target file where the plot
should be saved. The following files are supported: pdf, png, jpeg. Note - the time to generate the graph depends on
the number of resources, the number of tasks and the duration of the entire workflow, and for larger scenarios can be a
time-consuming operation. In the case of a scenario running 2000 tasks on 960 cores and 40 nodes, graph generation
can take up to 3 minutes.

Example of chart generation:

$ qcg-pm-report gantt-gaps out/intelmpi-mpi-iter-mixed-10128873/ gantt-gaps.pdf

A sample chart generated:

14.2. Analysis tool - qcg-pm-report 51

QCG-PilotJob

14.2.5 rusage

The rusage command is used to generate a report showing the usage of available resources. In the basic version, it
displays two metrics:

• used cores - number of cores on which tasks were running

• average core utilization (%) - percentage core utilization, it is calculated as the average value of
the percentage utilization of a single core (on which at least one task was running)

The single core utilisation percentage is calculated as the ratio of the time during which a job was actually running
on a given node (based on metrics sent by the wrapper) to the total time of running the QCG-PilotJob service (see
service runtime in the stats command).

An example of a generated report:

52 Chapter 14. Performance statistics

QCG-PilotJob

$ qcg-pm-report rusage out/intelmpi-mpi-iter-mixed-large-10128902/
used cores: 960

average core utilization (%): 94.2%

Running the rusage command with the --details parameter will list the usage percentages for each core.

For example, a generated report containing details:

$ qcg-pm-report rusage --details out/intelmpi-mpi-iter-mixed-large-10128902/
used cores: 960

average core utilization (%): 94.2%
tcn1261

0 : 95.9%, unused 7.8734 s
1 : 95.9%, unused 7.8734 s
2 : 96.1%, unused 7.4926 s
3 : 96.1%, unused 7.4926 s
4 : 96.2%, unused 7.3733 s
5 : 96.2%, unused 7.3733 s
6 : 90.0%, unused 19.3723 s
7 : 90.0%, unused 19.3723 s
8 : 90.4%, unused 18.5259 s
9 : 90.4%, unused 18.5259 s
10 : 90.1%, unused 19.0094 s
11 : 90.1%, unused 19.0094 s
12 : 90.3%, unused 18.7818 s
13 : 90.3%, unused 18.7818 s
14 : 90.3%, unused 18.7562 s
15 : 90.3%, unused 18.7562 s
16 : 95.4%, unused 8.8197 s
17 : 95.4%, unused 8.8197 s
18 : 95.5%, unused 8.6833 s
19 : 95.5%, unused 8.6833 s
20 : 95.6%, unused 8.5297 s
21 : 95.6%, unused 8.5297 s
22 : 95.8%, unused 8.0063 s
23 : 95.8%, unused 8.0063 s

(due to the length of the report, data for one computational node only are included).

14.2.6 efficiency

Command efficiency is used to show the percentage of resource usage, excluding the time when the resource
was inactive due to a scheduling plan. Resource usage time is counted as time when any task was running or when
another task was waiting for another resource to free up. The efficiency metric only takes into account delays due to
QCG-PilotJob’s job launching and termination handling.

An example of a generated report:

$ qcg-pm-report efficiency out/intelmpi-mpi-iter-mixed-large-10128902/
used cores: 960

average core utilization (%): 99.6%

14.2. Analysis tool - qcg-pm-report 53

QCG-PilotJob

54 Chapter 14. Performance statistics

CHAPTER 15

Performance tuning

15.1 Node launcher agents

To launch user jobs in Slurm allocation, the QCG PilotJob service is using its own services that are started on each
of the allocation’s node. This sub-service is called node launcher agent. When used on big allocations, that contains
hundred of nodes, the process of starting node launcher agents can therefore take longer. Also there is a chance that
due to some circumstances (software or hadrware), the process of node launching agent fail. To deal with such cases,
there are command line options to control the process of starting node launcher agents:

• --nl-init-timeout NL_INIT_TIMEOUT - the NL_INIT_TIMEOUT specify number of seconds the
service should wait for all node launcher agents start (600 by default),

• --nl-ready-treshold NL_READY_TRESHOLD- the NL_READY_TRESHOLD value (from range 0.0 -
1.0) control the ration of ready node launcher agents when process of executing workflow can be started (1.0
by default).

After starting of all node launcher agents, the QCG PilotJob service waits up to NL_INIT_TIMEOUT until
NL_READY_TRESHOLD * total number of agents report it’s successfull start. When it happen, the execution of
the workflow begins, and jobs are submitted only to those nodes where launcher agents successfully started. All other
agents may register after this time enabling their nodes for exection. When, from some reason the required number
of agents did not register in given interval, the QCG PilotJob service should report the error and exit without starting
workflow execution.

15.2 Reserving a core for QCG PJM

We recommend to use --system-core parameter for workflows that contains many small jobs (HTC) or bigger
allocations (>256 cores). This will reserve a single core in allocation (on the first node of the allocation) for QCG
PilogJob Manager service.

55

QCG-PilotJob

56 Chapter 15. Performance tuning

CHAPTER 16

Processes statistics

QCG-PilotJob Manager support gathering metrics about launched processes. This feature enables analysis of applica-
tion behavior such as:

• process tree inspection, from the lauching by QCG-PilotJob to the final application process (with all intermediate
steps, such as srun, mpirun, orted etc. with time line (delays between following processes in tree)

• process localization, such as: node name and cpu affinity

• coarse process metrics: cpu and memory utilization

Note: Please note that this is initial version of gathering process metrics, and due to the implementation obtained data
might be precise.

16.1 How it works

When --enable-proc-stats has been used with QCG-PilotJob (either as a command line argument or as argu-
ment to the server_args parameter of LocalManager class), the launcher agent started on each of the Slurm
allocation’s node stars thread that periodically query about processes started in the local system. Because collect-
ing statistics about all processes in the system would take too much time, and thus reduce the frequency of queries,
launcher agent only checks the descendants of the slurmstepd process. This process is responsible for starting
every user process in Slurm, including launcher agent. Therefore we register all process started by launcher agent, and
also processes started by MPI that is configured with Slurm (in such situation, Slurm asks slurmstepd daemon to
launch instancesof MPI application). Every descendant process of the slurmstepd is registered with it’s identifier
(pid) and basic statistics, such as:

• pid - process identifier

• process name (in most cases name of the executable file)

• command line arguments

• parent process name

57

QCG-PilotJob

• parent process identifier

• cpu affinity - list of available cores

• accumulated process times in seconds (the detailed description of the format is available at https://psutil.
readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.cpu_times)

• memory information (the detailed description of the format is available at https://psutil.readthedocs.io/en/latest/
index.html?highlight=cpu_times#psutil.Process.memory_info)

Currently the data from each query is stored in in-memory database and saved to the file at launcher agent
finish. The destination file, created in QCG-PilotJob working directory, will have name of following pattern:
ptrace_{node_name}_{current_date}_{random_number}.log. In the future releases we are planing
to send those information to external service that will allow to run-time monitoring of gathered statistics.

It is worth to mention about some shortcoming of such approach:

• because the processes are queried with some frequency (currently every 1 second), there is a chance that very
short living process will not be registered,

• there is a possibility that after finish of some process, another one with the same identifier will be created later

16.2 How to use

First of all the --enable-proc-stats arument of the QCG-PilotJob service must be used either as command
line argument, or as one of the server_args element in LocalManager class. When all QCG-PilotJob work-
flow finish, the working directory should contain one or many (for each of allocation nodes there should be in-
stance of this file) files named ptrace_{node_name}_{current_date}_{random_number}.log. Those
files contains information about processes statistics in JSON format. To analyze this data, QCG-PilotJob provides
qcg-pm-processes command line tool. Documentation about this tool is available with:

In this example we submitted 6 instances of mpi_iter job, where each instance is an MPI application started on 8
cores.

To get process tree of the first instance of this job:

$ qcg-pm-processes tree out-api-mpi-iter mpi_iter:0
job mpi_iter:0, job process id 28521, application name openmpi_3.1_gcc_6.2_app

--28521:bash (bash -c source /etc/profile; module purge; module load openmpi/3.1.4_
→˓gcc620; exe) node(e0025) created 2021-03-25 17:18:34.350000

--29537:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.83 secs

--29542:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.86 secs

--29638:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 4.01 secs

--29608:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.98 secs

--29547:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.88 secs

--29579:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.95 secs

--29554:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.91 secs

--29567:openmpi_3.1_gcc_6.2_app (/tmp/lustre_shared/plgkopta/qcgpjm-altair/
→˓examples/openmpi_3.1_gcc_6.2_app) node(e0025) after 3.94 secs

To get detail process info:

58 Chapter 16. Processes statistics

https://psutil.readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.cpu_times
https://psutil.readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.cpu_times
https://psutil.readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.Process.memory_info
https://psutil.readthedocs.io/en/latest/index.html?highlight=cpu_times#psutil.Process.memory_info

QCG-PilotJob

$ qcg-pm-processes apps out-api-mpi-iter mpi_iter:0
found 8 target processes
29537:openmpi_3.1_gcc_6.2_app

created: 2021-03-25 17:18:38.180000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [0]
cpu times: [0.04, 0.03, 0.0, 0.0, 0.0]
cpu memory info: [25219072, 525488128, 12701696, 8192, 0, 153374720,

→˓0]
cpu memory percent: 0.018710530527870046

29542:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.210000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [1]
cpu times: [0.06, 0.03, 0.0, 0.0, 0.0]
cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01870141381655226

29638:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.360000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [7]
cpu times: [0.05, 0.03, 0.0, 0.0, 0.0]
cpu memory info: [25202688, 391258112, 12689408, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01869837491277966

29608:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.330000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [6]
cpu times: [0.04, 0.04, 0.0, 0.0, 0.0]
cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01870141381655226

29547:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.230000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [2]
cpu times: [0.06, 0.03, 0.0, 0.0, 0.0]
cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01870141381655226

29579:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.300000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun

(continues on next page)

16.2. How to use 59

QCG-PilotJob

(continued from previous page)

cpu affinity: [5]
cpu times: [0.05, 0.03, 0.0, 0.0, 0.0]
cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01870141381655226

29554:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.260000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [3]
cpu times: [0.05, 0.04, 0.0, 0.0, 0.0]
cpu memory info: [25202688, 391258112, 12689408, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01869837491277966

29567:openmpi_3.1_gcc_6.2_app
created: 2021-03-25 17:18:38.290000
cmdline: /tmp/lustre_shared/plgkopta/qcgpjm-altair/examples/openmpi_3.

→˓1_gcc_6.2_app
parent: 28521:mpirun
cpu affinity: [4]
cpu times: [0.06, 0.03, 0.0, 0.0, 0.0]
cpu memory info: [25206784, 391258112, 12693504, 8192, 0, 153370624,

→˓0]
cpu memory percent: 0.01870141381655226

It is worth to mention, that analysis with the qcg-pm-processes tool can be done at any time outside the Slurm
allocation. The only input data is the working directory.

60 Chapter 16. Processes statistics

CHAPTER 17

Log files

QCG-PilotJob Manager creates a sub directory .qcgpjm-service- in working directory where the following files are
stored:

• service.log - logs of QCG-PilotJob Manager, very useful in case of problems

• jobs.report - the file containing information about all finished jobs, by default written in text format, but
there is an option for JSON format which will be easier to parse

• final_status - created at the finish of QCG-PilotJob Manager with general statistics about platform, avail-
able resources and jobs in registry (not removed) that finished, failed etc.

The verbosity of log file can be controlled by the --log parameter where debug value is the most verbose mode, and
critical the most silent mode. We recommend to not set the debug for large HTC workflows, as it additionally
loads the file system.

61

QCG-PilotJob

62 Chapter 17. Log files

CHAPTER 18

Slurm performance

18.1 srun command

QCG-Pilot job uses the Slurm’s srun client to run applications within a created allocation. Thanks to the tight inte-
gration with the queueing system, srun is able to properly run an application on the specified node of our allocation
using, for example, cpu binding mechanisms. The usage of srun seems to be particularly convenient for running paral-
lel applications using the MPI library. It provides a unified way of running such applications, regardless of the vendor
and version of MPI library (note that the commands used to run MPI-based applications provided by different MPI
libraries such as OpenMPI/IntelMPI/MPICH have a different name, syntax and way of running the target application).
Unfortunately, when starting an application, the srun client communicates with the queueing system controller and
creates a step for each running application. It turns out that with too frequent use of this client, the queue system
controller struggles with quite a heavy load which affects the performance of the whole queueing system.

The QCG-PilotJob service uses the srun client by default in two cases:

• during service initialization to launch agents* running on each allocation node

• in the srunmpi model when launching user applications with the srunmpi model.

It is possible to replace srun with alternatives for both these cases as presented below.

18.2 Recommendations

18.2.1 Agents

When running QCG-PilotJob on large allocations (containing more than a few dozen nodes) it is recommended to use
the --nl-start-method call parameter with the value ssh which will cause the QCG-PilotJob service agents to
be started on the allocation nodes using the ssh protocol.

Note: Ensure that logging in using the ssh protocol is done using a

63

QCG-PilotJob

public key without requiring a password. Information on how to configure the ssh service in this way should be
available in the documentation of the computing system, and usually boils down to generating an ssh key and adding
its public signature to the ~/.ssh/authorized_keys file.

18.2.2 User parallel applications

For scenarios containing a significant number of parallel user jobs, we recommend that you resign from the srunmpi
tasks startup model and use one of the following:

• intelmpi

• openmpi

These are models that use native IntelMPI and OpenMPI library commands to run parallel applications. Addition-
ally, they allow to configure call parameters using model_opts/mpirun and model_opts/mpirun_args
elements. An example syntax of such commands is as follows:

1) example of running a LAMMPS application compiled with the IntelMPI library using the ssh protocol on a Super-
mucNG system

....
"name": "lammps-bench",
"execution": {

"exec": "lmp",
"args": ["-log", "none", "-i", "in.lammps"],
"stderr": "stderr",
"stdout": "stdout",
"model": "intelmpi",
"model_opts": { "mpirun_args": ["-launcher", "ssh"] }

},
"resources": {

"numCores": {
"exact": 24

}
}
....

2) example of running an application compiled with the OpenMPI library

....
"name": "mpi-app",

"execution": {
"exec": "mpiapp",
"stderr": "stderr",
"stdout": "stdout",
"model": "openmpi",
"model_opts": {

"mpirun": "/opt/exp_soft/local/skylake/openmpi/4.1.0_gcc620/
→˓bin/mpirun",

"mpirun_args": ["--mca", "rmaps_rank_file_physical", "1"]
},
modules = ["openmpi/4.1.0_gcc620"],

},
"resources": {

"numCores": {
"exact": 24

}

(continues on next page)

64 Chapter 18. Slurm performance

QCG-PilotJob

(continued from previous page)

}
....

18.2. Recommendations 65

QCG-PilotJob

66 Chapter 18. Slurm performance

CHAPTER 19

FAQ

19.1 How is QCG-PilotJob better than a BASH script?

QCG-PilotJob has been designed to simplify definition of common scenarios of execution of large number of tasks on
computing resources. Typically these scenarios were done by application developers in a custom and often far from
an optimal way. With QCG-PilotJob users are offered with ready to use efficient mechanisms as well as nice API
that can be recognized as much more natural solution than sophisticated BASH scripts, for both direct human use and
integration with other software components.

The particular advantage of QCG-PilotJob is visible in case of dynamic scenarios with dynamic number of jobs,
dynamic requirements of these jobs and a need to start / cancel these jobs depending on the intermediary results of
calculations. For these scenarios the core capabilities of QCG-PilotJob and easy to use constructs offered by QCG-
PilotJob API seem to be exceptionally sound.

For all kinds of scenarios, also for the static use-cases (where we know in advance a number of tasks, their require-
ments, and we have a static allocation) QCG-PilotJob provides a few advantages, like built-in mechanism to resume
prematurely stopped workflow, tools for collecting timings from the execution and generation of the reports for the
analysis (e.g. Gantt chart), or a custom launcher for single-core tasks, which is more efficient (at least on some re-
sources) than the srun command run from BASH. QCG-PilotJob delivers also different predefined models of running
tasks with srun, intelmpi, openmpi as well as a with openmp, which simplify execution of MPI and OpenMP based
applications across different computing resources.

However, the target powerfulness of the QCG-PilotJob should be achieved when we release the common queue service
that will provide the possibility to combine resources from many allocations into one QCG-PilotJob. Then it will be
easy to extend the resources depending on the dynamic needs of the scenario, taking them even from many HPC
facilities.

19.2 How is QCG-PilotJob better than existing Workflow / Pilot Job
implementations?

The strategic decision for the development of QCG-PilotJob was to ensure simplicity of the entire process related to
the tool’s use: from its installation, through defining workflows, to the actual execution of tasks. Thus, in contrast to

67

QCG-PilotJob

many existing products, QCG-PilotJob not only simplifies definition of execution scenarios, but also comes very easy
to install and can be run without problems across different environments, even conservative and variously restricted
ones.

It should be stressed that QCG-PilotJob is a fully user-space solution, and as such, can be installed by an ordinary user,
in its home directory (e.g. in a virtual environment). At any step there is no need to bother administrators: to install
something or to open some ports.

68 Chapter 19. FAQ

CHAPTER 20

Dictionary

Scheduling system A service that controls and schedules access to the fixed set of computational resources (aka.
queuing system, workload manager, resource management system). The current implementation of QCG-
PilotJob supports SLURM cluster management and job scheduling system.

Job A sequential or parallel program with defined resource requirements

Job array A mechanism that allows to submit a set of jobs with the same resource requirements to the scheduling
system at once; commonly used in parameter sweep scenarios

Allocation A set of resources allocated by the scheduling system for a specific time period; resources assigned to an
allocation are static and do not change in time

QCG-PilotJob Manager A service started inside a scheduling system allocation that schedules and controls execu-
tion of jobs on the same allocation

QCG-PilotJob Manager API An interface in the form of Python module that provides communication with QCG-
PilotJob Manager

Application Controller A user’s program run as one of jobs inside QCG-PilotJob Manager that, using the QCG-
PilotJob Manager API, dynamically submits and synchronizes new jobs

69

QCG-PilotJob

70 Chapter 20. Dictionary

CHAPTER 21

License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

(continues on next page)

71

QCG-PilotJob

(continued from previous page)

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You

(continues on next page)

72 Chapter 21. License

QCG-PilotJob

(continued from previous page)

meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

(continues on next page)

73

QCG-PilotJob

(continued from previous page)

PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

74 Chapter 21. License

CHAPTER 22

qcg.pilotjob.api package

22.1 Submodules

22.1.1 qcg.pilotjob.api.errors module

exception qcg.pilotjob.api.errors.QCGPJMAError
Bases: Exception

exception qcg.pilotjob.api.errors.InternalError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.InvalidJobDescriptionError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.JobNotDefinedError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.ConnectionError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.WrongArgumentsError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.FileError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.ServiceError
Bases: qcg.pilotjob.api.errors.QCGPJMAError

exception qcg.pilotjob.api.errors.TimeoutElapsed
Bases: Exception

75

QCG-PilotJob

22.1.2 qcg.pilotjob.api.job module

class qcg.pilotjob.api.job.Jobs
Bases: object

Group of job descriptions to submit

_list
map with added job descriptions

Type dict(str,dict)

_job_idx
counter which is used to return ordered lists

Type int

Initialize instance.

add(job_attrs=None, **kw_attrs)
Add a new, simple job description to the group.

If both arguments are present, they are merged and processed as a single dictionary. The following job
attributes are currenlty supported:

• name (str, optional): the job name

• exec (str, optional): path to the executable program

• script (str, optional): bash script content

• args (str or list(str), optional): executable program arguments

• stdin (str, optional): path to file which content should be passed to the standard input stream

• stdout (str, optional): path to the file where standard output stream should be saved

• stderr (str, optional): path to the file where standard error stream should be saved

• wd (str, optional): path to the working directory where job should be started

• modules (str or list(str), optional): list of modules that should be loaded before job start

• venv (str, optional): path to the virtual environment that should be initialized before job start

• model (str, optional): model of execution

• model_opts (dict, optional): model options

• numCores (int or dict, optional): number of required cores specification

• numNodes (int or dict, optional): number of required nodes specification

• wt (str, optional): job’s maximum wall time

• iteration (int, dict or list, optional): iterations definition

• after (str or list(str), optional): name of the job’s that must finish successfully before current one
start

The attributes exec (with optional args) are mutually exclusive with script.

The numCores and numNodes atrributes may contain dictionary with following keys:

• min (int, optional): minimum number of resources

• max (int, optional): maximum number of resources

• exact (int, optional): exact number of resources

76 Chapter 22. qcg.pilotjob.api package

QCG-PilotJob

• scheduler (str, optional): name of iteration resource scheduler

The min, max attributes are mutually exclusive with exact. The description of iteration resource sched-
ulers can be found in documentation.

The iteration argument may contain either:

• dictionary with following keys:

– start (int, optional): iterations start index

– stop (int, optional): iterations stop index

• values list with following iteration names

The total number of iterations will be:

• stop - start (the last iteration index will be stop - 1) for boundary definition

• length of values list

Parameters

• job_attrs (dict) – job description attributes in a simple format

• kw_attrs (dict) – job description attributes as a named arguments in a simple format

Raises InvalidJobDescriptionError – in case of non-unique job name or invalid job
description

add_std(job_attrs=None, **kw_attrs)
Add a new, standard job description (acceptable by the QCG PJM) to the group.

If both arguments are present, they are merged and processed as a single dictionary.

Parameters

• job_attrs (dict) – job description attributes in a standard format

• kw_attrs (dict) – job description attributes as a named arguments in a standard format

Raises InvalidJobDescriptionError – in case of non-unique job name or invalid job
description

remove(name)
Remote a job from the group.

Parameters name (str) – name of the job to remove

Raises JobNotDefinedError – in case of missing job in a group with given name

clear()
Remove all jobs from the group.

Returns number of removed elements

Return type int

job_names()
Return a list with job names in group.

Returns job names in group

Return type list(str)

ordered_job_names()
Return a list with job names in group in order they were appended.

22.1. Submodules 77

QCG-PilotJob

Returns ordered job names

Return type list(str)

jobs()
Return job descriptions in format acceptable by the QCG-PJM

Returns a list of jobs in the format acceptable by the QCG PJM (standard format)

Return type list(dict)

ordered_jobs()
Return job descriptions in format acceptable by the QCG-PJM in order they were appended.

Returns a list of jobs in the format acceptable by the QCG PJM (standard format)

Return type list(dict)

load_from_file(file_path)
Read job’s descriptions from JSON file in format acceptable (StdJob) by the QCG-PJM

Parameters file_path (str) – path to the file with jobs descriptions in a standard format

Raises InvalidJobDescriptionError – in case of invalid job description

save_to_file(file_path)
Save job list to JSON file in a standard format.

Parameters file_path (str) – path to the destination file

Raises FileError – in case of problems with opening / writing output file.

22.1.3 qcg.pilotjob.api.jobinfo module

class qcg.pilotjob.api.jobinfo.JobInfo
Bases: object

Object to store parsed job informations.

name
job name

Type str

status
job status

Type str

nodes
dictionary with node names and list of allocated cores

Type dict(str, int[]), optional

total_cores
number of total allocated cores

Type int

wdir
working directory path

Type str

time
job run time

78 Chapter 22. qcg.pilotjob.api package

QCG-PilotJob

Type timedelta, optional

iteration
iteration index

Type int, optional

iterations
info about iterations

Type dict, optional

childs
a list of child jobs

Type JobInfo[], optional

history
list of job status change moments

Type str[], optional

messages

Type str

static from_child(job_name, child_data)
Parse information about a sub job.

Parameters

• job_name (str) – job name

• child_data (dict) – element of ‘childs’ from job info response

Returns instance of job info

Return type JobInfo

static from_job(job_data)
Parse job info response.

Parameters job_data (dict) – job information obtained with jobInfo request

Returns parsed information

Return type JobInfo

22.1.4 qcg.pilotjob.api.manager module

class qcg.pilotjob.api.manager.TimeStamp(manager, timeout_secs=None)
Bases: object

Timestamp utility to trace timeouts and compute the poll times that do not exceed defined timeouts.

Create timestamp. During initialization the timestamp start moment is set to current time.

Parameters

• (Manager) (manager) – the manager instance with defined default poll and publisher
timeout setting

• (int|float) (timeout) – the timeout in seconds for operation related with this times-
tamp, the default value None means the timeout is not defined (infinity)

22.1. Submodules 79

QCG-PilotJob

secs_from_start
Return number of seconds elapsed since start

check_timeout()
Check if timeout has been reached. If timeout_secs has been defined check if timeout_secs have elapsed
from started datetime. If timeout_secs is not defined always return False

Returns True if timeout reached, False otherwise

get_poll_time()
Return the poll time that do not exceed timeout. If timeout already reached, the 0 will be returned.

Returns poll time in seconds

get_events_timeout()
Return the subscribe timeout that do not exceed total operation timeout. If timeout already reached, the 0
will be returned.

Returns the timeout time in seconds

class qcg.pilotjob.api.manager.Manager(address=None, cfg=None)
Bases: object

The Manager class is used to communicate with single QCG-PilotJob manager instance.

We assume that QCG-PilotJob manager instance is already running with ZMQ interface. The communication
with QCG-PilotJob is fully synchronous.

Initialize instance.

Parameters

• address (str) – [proto://]host[:port] the default values for ‘proto’ and ‘port’ are respec-
tively - ‘tcp’ and ‘5555’; if ‘address’ is not defined the following procedure will be per-
formed:

a) if the environment contains QCG_PM_ZMQ_ADDRESS - the value of this var will
be used,

else

b) the tcp://127.0.0.1:5555 default address will be used

• cfg (dict) – ‘default_poll_delay’ - the default delay between following status polls in
wait methods ‘default_pub_timeout’ - the default timeout for waiting on published events
‘log_file’ - the location of the log file ‘log_level’ - the log level (‘DEBUG’); by default the
log level is set to INFO

DEFAULT_ADDRESS_ENV = 'QCG_PM_ZMQ_ADDRESS'

DEFAULT_ADDRESS = 'tcp://127.0.0.1:5555'

DEFAULT_PROTO = 'tcp'

DEFAULT_PORT = '5555'

DEFAULT_POLL_DELAY = 5

DEFAULT_PUB_TIMEOUT = 300

send_request(request)
Method for testing purposes - allows to send any request to the QCG PJM. The received response is
validated for correct format.

80 Chapter 22. qcg.pilotjob.api package

tcp://127.0.0.1:5555

QCG-PilotJob

Parameters request (dict) – the request data to send

Returns validated response

Return type dict

resources()
Return available resources.

Return information about current resource status of QCG PJM.

Returns data in format described in ‘resourceInfo’ method of QCG PJM.

Return type dict

Raises see _send_and_validate_result

submit(jobs)
Submit jobs.

Parameters jobs (Jobs) – the job descriptions to submit

Returns list of submitted job names

Return type list(str)

Raises

• InternalError - in case of unexpected result format

• see _send_and_validate_result

list()
List all jobs.

Return a list of all job names registered in the QCG PJM. Beside the name, each job will contain additional
data, like:

status (str) - current job status messages (str, optional) - error message generated during job
processing inQueue (int, optional) - current job position in scheduling queue

Returns dictionary with job names and attributes

Return type dict

Raises

• InternalError - in case of unexpected result format

• see _send_and_validate_result

status(names)
Return current status of jobs.

Parameters names (str|list(str)) – list of job names to get status for

Returns

dictionary with job names and status data in format of dictionary with following keys:
status (int): 0 - job found, other value - job not found message (str): an error description
data (dict):

jobName: job name status: current job status

Return type dict

Raises see _send_and_validate_result

22.1. Submodules 81

QCG-PilotJob

info(names, **kwargs)
Return detailed information about jobs.

Parameters

• names (str|list(str)) – list of job names to get detailed information about

• kwargs (**dict) – additional keyword arguments to the info method, currently following
attributes are supported:

withChilds (bool): if True the detailed information about all job’s iterations will be
returned

Returns

dictionary with job names and detailed information in format of dictionary with following keys:
status (int): 0 - job found, other value - job not found message (str): an error description
data (dict):

jobName (str): job name status (str): current job status iterations (dict, optional): the
information about iteration job

start: start index of iterations stop: stop index of iterations total: total number of
iterations finished: already finished number of iterations failed: already failed
number of iterations

childs (list(dict), optional): only when ‘withChilds’ option has been used, each entry contains:
iteration (int): the iteration index state (str): current state of iteration runtime
(dict): runtime information

messages (str, optional): error description runtime (dict, optional): runtime informa-
tion, see below history (str): history of status changes, see below

The runtime information can contains following keys:

allocation (str): information about allocated resources in form:

NODE_NAME0[CORE_ID0[:CORE_ID1+]][,NODE_NAME1[CORE_ID0[:CORE_ID1+]].]

the nodes are separated by the comma, and each node contain CPU’s identifiers sepa-
rated by colon : enclosed in square brackets

wd (str): path to the working directory rtime (str): the running time (set at the job’s or
job’s iteration finish) exit_code (int): the exit code (set at the job’s or job’s iteration finish)

The history information contains multiple lines, where each line has format: YEAR-
MONTH-DAY HOUR:MINUTE:SECOND.MILLIS: STATE

The first part is a job’s or job’s iteration status change timestamp, and second is the new state.

Return type dict

Raises

• InternalError – in case the response format is invalid

• ConnectionError – in case of non zero exit code, or if connection has not been
established yet

info_parsed(names, **kwargs)
Return detailed and parsed information about jobs.

The request sent to the QCG-PilotJob manager instance is the same as in info, but the result information
is parsed into more simpler to use JobInfo object.

82 Chapter 22. qcg.pilotjob.api package

QCG-PilotJob

Parameters

• names (str|list(str)) – list of job names to get detailed information about

• kwargs (**dict) – additional keyword arguments to the info method, currently fol-
lowing attributes are supported:

withChilds (bool): if True the detailed information about all job’s iterations will
be returned

Returns a dictionary with job names and information parsed into JobInfo object

Return type dict(str, JobInfo)

Raises

• InternalError – in case the response format is invalid

• ConnectionError – in case of non zero exit code, or if connection has not been
established yet

remove(names)
Remove jobs from QCG-PilotJob manager instance.

This function might be useful if we want to submit jobs with the same names as previously used, or to
release memory allocated for storing information about already finished jobs. After removing, there will
be not possible to get any information about removed jobs.

Parameters names (str|list(str)) – list of job names to remove from QCG-PilotJob
manager

Raises

• InternalError – in case the response format is invalid

• ConnectionError – in case of non zero exit code, or if connection has not been
established yet

cancel(names)
Cancel jobs execution.

This method is currently not supported.

Parameters names (str|list(str)) – list of job names to cancel

Raises InternalError – always

finish()
Send finish request to the QCG-PilotJob manager, close connection.

Sending finish request to the QCG-PilotJob manager result in closing instance of QCG-PilotJob manager
(with some delay). There will be not possible to send any new requests to this instance of QCG-PilotJob
manager.

Raises

• InternalError – in case the response format is invalid

• ConnectionError – in case of non zero exit code, or if connection has not been
established yet

cleanup()
Clean up resources.

The custom logging handlers are removed from top logger.

system_status()

22.1. Submodules 83

QCG-PilotJob

wait4(names, timeout=None)
Wait for finish of specific jobs.

This method waits until all specified jobs finish its execution (successfully or not). The QCG-PilotJob
manager is periodically polled about status of not finished jobs. The poll interval (2 sec by default) can be
changed by defining a ‘poll_delay’ key with appropriate value (in seconds) in configuration of instance.

Parameters

• names (str|list(str)) – list of job names to get detailed information about

• timeout (int|float) – maximum number of seconds to wait

Returns dict - a map with job names and their terminal status

Raises

• TimeoutElapsed – in case of timeout elapsed

• InternalError – in case the response format is invalid

• ConnectionError – in case of non zero exit code, or if connection has not been
established yet

wait4all(timeout_secs=None)
Wait for finish of all submitted jobs.

Parameters (int|float) (timeout_secs) – optional timeout setting in seconds

:raise TimeoutElapsed when timeout elapsed (if defined as argument)

This method waits until all jobs submitted to service finish its execution (successfully or not).

wait4_any_job_finish(timeout_secs=None)
Wait for finish one of any submitted job.

This method waits until one of any jobs submitted to service finish its execution (successfully or not).

:arg timeout_secs (float|int) - timeout in milliseconds, endlessly (None) by default

:raise TimeoutElapsed when timeout elapsed (if defined as argument)

:return (str, str) identifier of finished job and it’s status or None, None if timeout has been reached.

static is_status_finished(status)
Check if status of a job is a terminal status.

Parameters status (str) – a job status

Returns true if a given status is a terminal status

Return type bool

class qcg.pilotjob.api.manager.LocalManager(server_args=None, cfg=None)
Bases: qcg.pilotjob.api.manager.Manager

The Manager class which launches locally (in separate thread) instance of QCG-PilotJob manager

The communication model as all functionality is the same as in Manager class.

Initialize instance.

Launch QCG-PilotJob manager instance in background thread and connect to it. The port number for ZMQ
interface of QCG-PilotJob manager instance is randomly selected.

Parameters

84 Chapter 22. qcg.pilotjob.api package

QCG-PilotJob

• server_args (list(str)) – the command line arguments for QCG-PilotJob man-
ager instance

--net enable network interface

--net-port NET_PORT port to listen for network interface (im-
plies –net)

--net-port-min NET_PORT_MIN minimum port range to lis-
ten for network interface if exact port num-
ber is not defined (implies –net)

--net-port-max NET_PORT_MAX maximum port range to lis-
ten for network interface if exact port num-
ber is not defined (implies –net)

--file enable file interface

--file-path FILE_PATH path to the request file (implies –file)

--wd WD working directory for the service

--envschema ENVSCHEMA job environment schema
[auto|slurm]

--resources RESOURCES source of information about avail-
able resources [auto|slurm|local] as well as
a method of job execution (through local
processes or as a Slurm sub jobs)

--report-format REPORT_FORMAT format of job report file
[text|json]

--report-file REPORT_FILE name of the job report file

--nodes NODES configuration of available resources (im-
plies –resources local)

–log {critical,error,warning,info,debug,notset} log level

--system-core reserve one of the core for the QCG-PJM

--disable-nl disable custom launching method

--show-progress print information about executing tasks

--governor run manager in the governor mode, where
jobs will be scheduled to execute to the de-
pendant managers

--parent PARENT address of the parent manager, current in-
stance will receive jobs from the parent
manaqger

--id ID optional manager instance identifier - will
be generated automatically when not de-
fined

--tags TAGS optional manager instance tags separated
by commas

--slurm-partition-nodes SLURM_PARTITION_NODES
split Slurm allocation by given number of

22.1. Submodules 85

QCG-PilotJob

nodes, where each group will be controlled
by separate manager (implies –governor)

--slurm-limit-nodes-range-begin SLURM_LIMIT_NODES_RANGE_BEGIN
limit Slurm allocation to specified range of
nodes (starting node)

--slurm-limit-nodes-range-end SLURM_LIMIT_NODES_RANGE_END
limit Slurm allocation to specified range of
nodes (ending node)

each command line argument and (optionaly) it’s value should be passed as separate entry
in the list

• cfg (dict) –

‘init_timeout’ - the timeout (in seconds) client should wait for QCG-PilotJob manager start until it raise
error, 300 by default

’poll_delay’ - the delay between following status polls in wait methods ‘log_file’ - the
location of the log file ‘log_level’ - the log level (‘DEBUG’); by default the log level is
set to INFO

finish()
Send a finish control message to the manager and stop the manager’s process.

Sending finish request to the QCG-PilotJob manager result in closing instance of QCG-PilotJob manager
(with some delay). There will be not possible to send any new requests to this instance of QCG-PilotJob
manager.

If the manager process won’t stop in 10 seconds it will be terminated. We also call the ‘cleanup’ method.

Raises

• InternalError – in case the response format is invalid

• ConnectionError – in case of non zero exit code, or if connection has not been
established yet

kill_manager_process()
Terminate the manager’s process with the SIGTERM signal.

In normal conditions the finish method should be called.

static is_notebook()

86 Chapter 22. qcg.pilotjob.api package

CHAPTER 23

qcg.pilotjob.executor_api package

23.1 Subpackages

23.1.1 qcg.pilotjob.executor_api.templates package

Submodules

qcg.pilotjob.executor_api.templates.basic_template module

class qcg.pilotjob.executor_api.templates.basic_template.BasicTemplate
Bases: qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate

static template()→ Tuple[str, Dict[str, Any]]

qcg.pilotjob.executor_api.templates.qcgpj_template module

class qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate
Bases: object

static template()→ Tuple[str, Dict[str, Any]]

87

QCG-PilotJob

23.2 Submodules

23.2.1 qcg.pilotjob.executor_api.qcgpj_executor module

class qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor(*other_args,
wd=’.’, re-
sources=None, re-
serve_core=False,
en-
able_rt_stats=False,
wrap-
per_rt_stats=None,
log_level=’info’)

Bases: concurrent.futures._base.Executor

QCG-PilotJob Executor. It provides simplified interface for common uses of QCG-PilotJob

Parameters

• wd (str, optional) – Working directory where QCG-PilotJob manager should be
started, by default it is a current directory

• resources (str, optional) – The resources to use. If specified forces usage of
Local mode of QCG-PilotJob Manager. The format is compliant with the NODES format
of QCG-PilotJob, i.e.: [node_name:]cores_on_node[,node_name2:cores_on_node][,. . .].
Eg. to define 4 cores on an unnamed node use resources=”4”, to define 2 nodes: node_1
with 2 cores and node_2 with 3 cores, use resources=”node_1:2,node_2:3”

• reserve_core (bool, optional) – If True reserves a core for QCG-PilotJob
Manager instance, by default QCG-PilotJob Manager shares a core with computing tasks
Parameters.

• enable_rt_stats (bool, optional) – If True, QCG-PilotJob Manager will col-
lect its runtime statistics

• wrapper_rt_stats (str, optional) – The path to the QCG-PilotJob Manager
tasks wrapper program used for collection of statistics

• log_level (str, optional) – Logging level for QCG-PilotJob Manager (for both
service and client part).

• other_args (optional) – Optional list of additional arguments for initialisation of
QCG-PilotJob Manager

Returns

Return type None

shutdown(wait=True)
Shutdowns the QCG-PJ manager service. If it is already closed, the method has no effect.

submit(fn: Callable[[...], Union[str, Tuple[str, Dict[str, Any]]]], *args, **kwargs)
Submits a specific task to the QCG-PJ manager using template-based, executor-like interface.

Parameters

• fn (Callable) – A callable that returns a tuple representing a task’s template. The
first element of the tuple should be a string containing a QCG-PilotJob task’s descrip-
tion with placeholders (identifiers preceded by $ symbol) and the second a dictionary
that assigns default values for selected placeholders.

88 Chapter 23. qcg.pilotjob.executor_api package

QCG-PilotJob

• *args (variable length list with dicts, optional) – A set of
dicts which contain parameters that will be used to substitute placeholders defined
in the template. Note: *args overwrite defaults, but they are overwritten by **kwargs

• **kwargs (arbitrary keyword arguments) – A set of keyword arguments
that will be used to substitute placeholders defined in the template. Note: **kwargs
overwrite *args and defaults.

Returns The QCGPJFuture object assigned with the submitted task

Return type QCGPJFuture

qcgpj_manager
Returns current QCG-PilotJob manager instance

class qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel
Bases: enum.Enum

An enumeration.

CRITICAL = 'critical'

ERROR = 'error'

WARNING = 'warning'

INFO = 'info'

DEBUG = 'debug'

class qcg.pilotjob.executor_api.qcgpj_executor.ClientLogLevel
Bases: enum.Enum

An enumeration.

INFO = 'info'

DEBUG = 'debug'

23.2.2 qcg.pilotjob.executor_api.qcgpj_future module

class qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture(ids, qcgpjm)
Bases: object

QCG-PilotJob Future tracks execution of tasks submitted to QCG-PilotJob via QCGPJExecutor.

Parameters

• ids (list(str)) – list of identifiers of tasks submitted to a QCG-PilotJob manager

• qcgpjm (LocalManager) – QCG-PilotJob manager instance, to which tasks have
been submitted

Returns

Return type None

result(timeout=None)
Waits for finish of tasks assigned to this future and once finished results their statuses.

This method waits until all tasks assigned to the future are executed (successfully or not). The QCG-
PilotJob manager is periodically polled about status of not finished jobs. The poll interval (2 sec by
default) can be changed by defining a ‘poll_delay’ key with appropriate value (in seconds) in configuration
of instance.

23.2. Submodules 89

QCG-PilotJob

Parameters timeout (int) – currently not used

Returns

Return type dict - a map with tasks names and their terminal status

done()
Checks if the future has been finished

Checks if all tasks assigned to the future are already finished.

Returns

Return type True if all tasks are finished, False otherwise

running()
Checks if the future is still running

Checks if any of tasks assigned to the future are still running.

Returns

Return type True if any of tasks is still running, False otherwise

cancel()
Cancels the future

Cancels all tasks assigned to the future.

Returns

Return type True if the operation succeeded.

cancelled()
Checks if the future has been already cancelled

Checks if the future, and by consequence all the tasks assigned to this future, have been cancelled.

Returns

Return type True if the future has been cancelled, False otherwise.

90 Chapter 23. qcg.pilotjob.executor_api package

CHAPTER 24

Indices and tables

• genindex

• modindex

• search

91

QCG-PilotJob

92 Chapter 24. Indices and tables

CHAPTER 25

Authors

Bartosz Bosak, Piotr Kopta, Tomasz Piontek (PSNC)

93

QCG-PilotJob

94 Chapter 25. Authors

Python Module Index

q
qcg.pilotjob.api, 1
qcg.pilotjob.api.errors, 75
qcg.pilotjob.api.job, 76
qcg.pilotjob.api.jobinfo, 78
qcg.pilotjob.api.manager, 79
qcg.pilotjob.executor_api, 87
qcg.pilotjob.executor_api.qcgpj_executor,

88
qcg.pilotjob.executor_api.qcgpj_future,

89
qcg.pilotjob.executor_api.templates, 87
qcg.pilotjob.executor_api.templates.basic_template,

87
qcg.pilotjob.executor_api.templates.qcgpj_template,

87

95

QCG-PilotJob

96 Python Module Index

Index

Symbols
_job_idx (qcg.pilotjob.api.job.Jobs attribute), 76
_list (qcg.pilotjob.api.job.Jobs attribute), 76

A
add() (qcg.pilotjob.api.job.Jobs method), 76
add_std() (qcg.pilotjob.api.job.Jobs method), 77

B
BasicTemplate (class in

qcg.pilotjob.executor_api.templates.basic_template),
87

C
cancel() (qcg.pilotjob.api.manager.Manager method),

83
cancel() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture

method), 90
cancelled() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture

method), 90
check_timeout() (qcg.pilotjob.api.manager.TimeStamp

method), 80
childs (qcg.pilotjob.api.jobinfo.JobInfo attribute), 79
cleanup() (qcg.pilotjob.api.manager.Manager

method), 83
clear() (qcg.pilotjob.api.job.Jobs method), 77
ClientLogLevel (class in

qcg.pilotjob.executor_api.qcgpj_executor),
89

ConnectionError, 75
CRITICAL (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel

attribute), 89

D
DEBUG (qcg.pilotjob.executor_api.qcgpj_executor.ClientLogLevel

attribute), 89
DEBUG (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel

attribute), 89

DEFAULT_ADDRESS (qcg.pilotjob.api.manager.Manager
attribute), 80

DEFAULT_ADDRESS_ENV
(qcg.pilotjob.api.manager.Manager attribute),
80

DEFAULT_POLL_DELAY
(qcg.pilotjob.api.manager.Manager attribute),
80

DEFAULT_PORT (qcg.pilotjob.api.manager.Manager at-
tribute), 80

DEFAULT_PROTO (qcg.pilotjob.api.manager.Manager
attribute), 80

DEFAULT_PUB_TIMEOUT
(qcg.pilotjob.api.manager.Manager attribute),
80

done() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture
method), 90

E
ERROR (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel

attribute), 89

F
FileError, 75
finish() (qcg.pilotjob.api.manager.LocalManager

method), 86
finish() (qcg.pilotjob.api.manager.Manager method),

83
from_child() (qcg.pilotjob.api.jobinfo.JobInfo static

method), 79
from_job() (qcg.pilotjob.api.jobinfo.JobInfo static

method), 79

G
get_events_timeout()

(qcg.pilotjob.api.manager.TimeStamp method),
80

get_poll_time() (qcg.pilotjob.api.manager.TimeStamp
method), 80

97

QCG-PilotJob

H
history (qcg.pilotjob.api.jobinfo.JobInfo attribute), 79

I
INFO (qcg.pilotjob.executor_api.qcgpj_executor.ClientLogLevel

attribute), 89
INFO (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel

attribute), 89
info() (qcg.pilotjob.api.manager.Manager method), 81
info_parsed() (qcg.pilotjob.api.manager.Manager

method), 82
InternalError, 75
InvalidJobDescriptionError, 75
is_notebook() (qcg.pilotjob.api.manager.LocalManager

static method), 86
is_status_finished()

(qcg.pilotjob.api.manager.Manager static
method), 84

iteration (qcg.pilotjob.api.jobinfo.JobInfo attribute),
79

iterations (qcg.pilotjob.api.jobinfo.JobInfo at-
tribute), 79

J
job_names() (qcg.pilotjob.api.job.Jobs method), 77
JobInfo (class in qcg.pilotjob.api.jobinfo), 78
JobNotDefinedError, 75
Jobs (class in qcg.pilotjob.api.job), 76
jobs() (qcg.pilotjob.api.job.Jobs method), 78

K
kill_manager_process()

(qcg.pilotjob.api.manager.LocalManager
method), 86

L
list() (qcg.pilotjob.api.manager.Manager method), 81
load_from_file() (qcg.pilotjob.api.job.Jobs

method), 78
LocalManager (class in qcg.pilotjob.api.manager), 84

M
Manager (class in qcg.pilotjob.api.manager), 80
messages (qcg.pilotjob.api.jobinfo.JobInfo attribute),

79

N
name (qcg.pilotjob.api.jobinfo.JobInfo attribute), 78
nodes (qcg.pilotjob.api.jobinfo.JobInfo attribute), 78

O
ordered_job_names() (qcg.pilotjob.api.job.Jobs

method), 77

ordered_jobs() (qcg.pilotjob.api.job.Jobs method),
78

Q
qcg.pilotjob.api (module), 1, 75
qcg.pilotjob.api.errors (module), 75
qcg.pilotjob.api.job (module), 76
qcg.pilotjob.api.jobinfo (module), 78
qcg.pilotjob.api.manager (module), 79
qcg.pilotjob.executor_api (module), 87
qcg.pilotjob.executor_api.qcgpj_executor

(module), 88
qcg.pilotjob.executor_api.qcgpj_future

(module), 89
qcg.pilotjob.executor_api.templates

(module), 87
qcg.pilotjob.executor_api.templates.basic_template

(module), 87
qcg.pilotjob.executor_api.templates.qcgpj_template

(module), 87
qcgpj_manager (qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor

attribute), 89
QCGPJExecutor (class in

qcg.pilotjob.executor_api.qcgpj_executor),
88

QCGPJFuture (class in
qcg.pilotjob.executor_api.qcgpj_future),
89

QCGPJMAError, 75
QCGPJTemplate (class in

qcg.pilotjob.executor_api.templates.qcgpj_template),
87

R
remove() (qcg.pilotjob.api.job.Jobs method), 77
remove() (qcg.pilotjob.api.manager.Manager method),

83
resources() (qcg.pilotjob.api.manager.Manager

method), 81
result() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture

method), 89
running() (qcg.pilotjob.executor_api.qcgpj_future.QCGPJFuture

method), 90

S
save_to_file() (qcg.pilotjob.api.job.Jobs method),

78
secs_from_start (qcg.pilotjob.api.manager.TimeStamp

attribute), 79
send_request() (qcg.pilotjob.api.manager.Manager

method), 80
ServiceError, 75

98 Index

QCG-PilotJob

ServiceLogLevel (class in
qcg.pilotjob.executor_api.qcgpj_executor),
89

shutdown() (qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor
method), 88

status (qcg.pilotjob.api.jobinfo.JobInfo attribute), 78
status() (qcg.pilotjob.api.manager.Manager method),

81
submit() (qcg.pilotjob.api.manager.Manager method),

81
submit() (qcg.pilotjob.executor_api.qcgpj_executor.QCGPJExecutor

method), 88
system_status() (qcg.pilotjob.api.manager.Manager

method), 83

T
template() (qcg.pilotjob.executor_api.templates.basic_template.BasicTemplate

static method), 87
template() (qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate

static method), 87
time (qcg.pilotjob.api.jobinfo.JobInfo attribute), 78
TimeoutElapsed, 75
TimeStamp (class in qcg.pilotjob.api.manager), 79
total_cores (qcg.pilotjob.api.jobinfo.JobInfo at-

tribute), 78

W
wait4() (qcg.pilotjob.api.manager.Manager method),

83
wait4_any_job_finish()

(qcg.pilotjob.api.manager.Manager method),
84

wait4all() (qcg.pilotjob.api.manager.Manager
method), 84

WARNING (qcg.pilotjob.executor_api.qcgpj_executor.ServiceLogLevel
attribute), 89

wdir (qcg.pilotjob.api.jobinfo.JobInfo attribute), 78
WrongArgumentsError, 75

Index 99

	Overview
	Installation
	Examples
	Modes of execution
	Parallelism
	QCG-PilotJob Manager options
	Key concepts
	Execution environments
	Execution models
	File based interface
	Executor API
	Iteration resources schedulers
	Resuming prematurely interrupted computations
	Performance statistics
	Performance tuning
	Processes statistics
	Log files
	Slurm performance
	FAQ
	Dictionary
	License
	qcg.pilotjob.api package
	qcg.pilotjob.executor_api package
	Indices and tables
	Authors
	Python Module Index
	Index

